

Roman Starkov

Davies Laing & Dick College

London 2002

 2

1. Introduction..7
2. Investigation...8
3. Requirements ...11

3.1. General requirements ..11
3.2. Simulation requirements ...11
3.3. Detail Levels ...11
3.4. Instruction set..11
3.5. Registers..12
3.6. Addressing modes...12
3.7. Extra functionality ..12
3.8. Security ...12

4. Constraints ...13
4.1. Hardware & Software ...13
4.2. CS proficiency ..13
4.3. Feasibility..13

5. Objectives ..14
6. Solution system..15
7. Introduction..18
8. Central Processing Unit ...19

8.1. Architecture...19
8.1.1. Memory models ...20
8.1.2. Addressing modes..21
8.1.3. Registers...21

8.2. Input/output...23
8.2.1. Interrupts ..23
8.2.2. I/O ports ...24

8.3. Instruction set..25
8.3.1. Data movement ..25
8.3.2. Arithmetic ..25
8.3.3. Bitwise ...26
8.3.4. Flags...27
8.3.5. Branching...27
8.3.6. Input/output..27
8.3.7. Other ..28
8.3.8. Notes ..28

8.4. Machine codes ..29
8.4.1. Conventions ...29
8.4.2. Registers...30
8.4.3. Memory addressing bytes ..30
8.4.4. Instructions...31
8.4.5. Instructions allocation..35

9. Peripherals..36
9.1. Computer structure..36
9.2. CPU...37
9.3. Buses ...37
9.4. RAM ...37
9.5. Video controller ..37
9.6. Keyboard controller ..39
9.7. Speaker..40

 3

9.8. System timer ...Error! Bookmark not defined.
10. Assembly language ..41

10.1. Statements ...41
10.2. Labels..41
10.3. Data declarations...41
10.4. Commands ..42
10.5. Operands ...42
10.6. Offset macro..44
10.7. References...44
10.8. Comments ...44

11. Interface ...46
11.1. Conventions ..46
11.2. Main window ..46
11.3. Computer window...47
11.4. Monitor window..48
11.5. Keyboard window...48
11.6. Speaker window..49
11.7. RAM window..49
11.8. Buses ...50
11.9. CPU window...51
11.10. Control Unit window ..53
11.11. ALU window ..53
11.12. Video controller ..54
11.13. Keyboard controller window ..54
11.14. Speaker controller window ...55
11.15. Code window ..55
11.16. Registers subwindow ..56
11.17. Variables subwindow..57
11.18. Stack subwindow ..57

12. Modules..58
12.1. Form modules ...58
12.2. Procedural modules...58

13. Data structures and globals ..59
14. Assembly process...60

14.1. Conventions and terms..60
14.2. Passes overview ..60
14.3. Pass 1. Tokenize..60
14.4. Pass 2. Code generation ..61
14.5. Token patterns...61

15. Execution process ..62
16. Sample scenario ...63
17. File formats ..65
18. Security and integrity...65
19. Design confirmation...66
20. Plan ..69
21. Listings...70

21.1. pGlobals ..70
21.2. pWinAPI ...71
21.3. pUtils...72
21.4. pCompile...75

 4

21.5. pExec...87
21.6. pIO ..97
21.7. fhCPU ...98
21.8. fhCU..99
21.9. fhRAM ..101
21.10. fdKeyboard ...103
21.11. fdSpeaker ..104
21.12. fdVideo ...105
21.13. fiMain..108
21.14. fiComp ..112
21.15. fiKeyboard ..112
21.16. fiDisplay..113
21.17. fsCode ...114
21.18. fsRegs..117
21.19. fsVars ..119
21.20. fsStack...120

22. Introduction..132
23. Organisation and conventions..132

23.1. Modules...132
23.2. Visibility and naming conventions ...133

24. Global data structures ..135
24.1. Proj structure...135

24.1.1. TpPrg substructure ...135
24.1.2. TpCPU substructure...136
24.1.3. TpDI...137
24.1.4. TpVideo substructure...137
24.1.5. TpToken...138
24.1.6. Token Type constants ..138
24.1.7. TpTokenLine..138
24.1.8. TpRef ...138
24.1.9. TpBackpatch ..138
24.1.10. TpVars..139
24.1.11. TpErrLog..139

25. Processes ..140
25.1. Startup ...140
25.2. Shutdown ..140
25.3. Assembly...140
25.4. Fetch..143
25.5. Decode ..143
25.6. Execute..143
25.7. Interrupt...143

26. Functions and procedures ..144
26.1. pGlobals ..144

26.1.1. Main ...144
26.1.2. WindowProc ..144

26.2. pUtils...144
26.3. pCompile...146
26.4. pExec...147
26.5. pIO ..148
26.6. Common functions (all form modules)...149

 5

26.7. Common functions (device modules) ...149
26.8. Other functions worth mentioning ..149

27. Sample modifications...151
27.1. Renaming opcodes ..151
27.2. Adding an instruction..151
27.3. Changing the amount of RAM..152

28. Appendices...153
28.1. Error and warning messages ...153
28.2. Microinstructions ..153
28.3. Microprograms..Error! Bookmark not defined.

29. Notes ..156
29.1. Error policy ...156
29.2. Instruction Pointer vs Program Counter ...156
29.3. Microinstructions and Design ...156

30. Introduction..158
31. Writing and running programs...159
32. Tracing program execution ..162

32.1. Number representation..162
32.2. Debugging...162
32.3. Viewing execution ..163

33. Using devices ...165
33.1. Video controller and display...165
33.2. Keyboard and Keyboard controller...166
33.3. Speaker and Speaker controller ..167

34. Testing your program...169
35. Assembly language manual ...170
36. Instructions...174

36.1. Data movement ...174
36.2. Basic arithmetic ..174
36.3. Conditional and unconditional branching...175
36.4. Procedures and stack...176
36.5. More arithmetic...177
36.6. Flow control and I/O...178

37. Error codes ...179

Analysis

CLab – Analysis Introduction

 7

1. Introduction

I am a Computer Science student, and I know from my own experience that it may be
hard to grasp at some concepts and ideas. I have noticed that people find some topics
in Computing very difficult to understand. When it came to choosing my A-level
project I remembered that. Computing is quite a different subject from others. It
describes a lot of dynamic processes unlike A-level Maths, and involves a lot of
completely new concepts unlike, for example, English or A-level Physics. Practical
demonstrations are a well-known teaching technique, and have proven to be very
useful. But it is a lot easier to demonstrate, say, attraction between charged objects
than a memory read operation. The reason seems to be that Physics has been taught
for a lot longer than Computing, and so while most schools have enough equipment in
their physics labs, hardly any schools have appropriate software equipment in their
computing labs. They have word-processing and program development software, but
apart from that only an occasional program to demonstrate a concept or a technique.
So I though that I could contribute to that area and develop a system to assist students
in learning Computing, and hopefully provide some useful hands-on experience in the
field.

The most obious users for my system is one of my Computing teachers and his
students. I assume that as an experienced teacher he will know exactly what he wants
such a system to do. Although students will also use the system, they are hardly likely
to have any idea as to what they want the system to do, apart from it being simple and
easy to understand. So I will concentrate on my teacher as the main user.

CLab – Analysis Investigation

 8

2. Investigation

As the main user of my system will be my Computer Science teacher, I have had an
interview with him. The goal of the interview was to find out the requirements for the
new system. Here is an approximate log of the interview:

– I am interested in creating a computer system which would aid students in learning

the principles of computers. I am sure there are a lot of things that could be done.
Can you think of any programs you might be interested in?

– There are quite a few simulations that could be useful. Starting from showing what
arrays are and how data can be sorted to simulating a whole virtual computer in
work.

– Which ones do you think would be most useful to you?
– The more complicated the topic is, the more we need a good illustration of how

things happen. Probably internal structure of a computer is one of the more
complicated topics, at the same time being a vital part of the syllabus.

– Do you mean you need a program that would show the role of different parts in a

computer and how they communicate with each other to do useful work?
– That’s right.

– OK. Let me think about it. How interactive do you think the simulation should be? It

could be just a set of video clips, or it could be based on some sort of initial data.
– In theory the best way I can think of doing this is to create an assembly language

interpreter which would show every step required to get a program executed. In that
way a student would be able, for instance, to investigate what happens to the buses,
or ‘feel’ the von Neumann machine principle, etc.

– The amount of work required to create such a system is quite high. Do you think it’s

worth it?
– An assembly language interpreter by itself might not be worth it because although it

is a profound topic in computer science, in the exam you usually get no more than
5% of the marks on assembly language. But if there were a system which would
help students really understand what computers are made of and why – that would
be very useful in my opinion.

– Another issue is how detailed you want the simulation to be. A very detailed system

might resemble a real PC well but be too complicated to be of any use in teaching.
On the other hand, if you have a very simple system you might not be able to show
as much as you want.

– I agree with you. I would like to be able to teach both GCSE and A-level students,
so it would be great if there was a way of switching complexity levels. These levels
should contain as much information as the syllabuses do.

– How do you teach assembly language at the moment?
– I have to show everything on paper or on whiteboard. It is quite hard to show how a

program works if you can’t run it.

– What areas of assembly language cause most problems to the students?

CLab – Analysis Investigation

 9

– Different addressing modes definitely cause most problems, especially indirect
addressing. It would be nice if some sort of animations were available. Other
aspects, such as shifts, take some time for the students to grasp at.

– Let’s think about the diagrams. Which ones do you want for GCSE and A-level?
– Well, probably a general diagram showing all computer components, and a diagram

for the internal structure of the CPU for A-level. I understand we would be able to
see everything animated on the diagram, e.g. how an instruction is fetched, or how
an interrupt is processed?

– Yes, that is the idea. By the way, you would probably need more than two detail
levels because, for example, you don’t want to see anything but CPU, RAM and
buses when you tell people about buses.

– That’s true.

– Now let’s concentrate on the assembly language. Examiners use different names for

instructions and registers than those that are more common in Windows-targeted
programming languages. I believe you would prefer examiners’ names?

– Yes. And I think that anybody who understands assembly language would learn new
names quickly if they need to.

– The instruction set would probably include arithmetic, logic and branching

instructions. Anything else?
– Yes. I would like to have a kind of screen which would be able to output either text

or graphics. Also primitive interrupt simulation, e.g. when a key is pressed, would
be a good idea.

– How many registers would you like to have?
– Accumulator, plus general purpose registers. Four or five general purpose registers

would do. I would prefer arithmetic commands to always have one of the operands
being the accumulator. Also I would like to see special purpose registers such as
Program Counter, Stack Pointer, Flags Register.

– Do you want to have different register sizes, e.g. ah, al being 8 bits each and eax

being 32 bits, while still being the same register?
– I think that would confuse students without teaching them anything. It is not such an

important part of assembly language to go into trouble of allowing that, and it is
very CPU-specific.

– So what register size, or bus width, do you think you need?
– In the majority of things I will use your program for I will not need more than 8 bits

address and 8 bits data registers. But if you find it easy you might allow for 16 bits
address and data buses. What I definitely want is each memory location to be 8 bits
in size.

– Do you want to have any segment registers? What addressing modes do you want to

see in the program?
– Immediate, direct and indirect addressing. You might allow for indexed addressing,

but it is of no major importance. In addition I would like to have relative jumps and
calls. Segment registers… Well, as long as they would not make everything very
confusing they would be OK. Probably I would prefer those as modifiers, not true

CLab – Analysis Investigation

 10

registers, e.g. when you access vs:[010h] then you always access location 10h in
video memory segment. But I want to have a simple mode where everything would
be in one big ‘segment’, including code, stack, data and video memory, to show the
von Neumann principle.

– How are we going to store a program? We can either store and interpret it in text

form, which would be the easiest way of doing it, where you have code separate
from everything else. Alternatively we could write a program in a special window
and then compile it into machine code. The latter is definitely more complicated to
implement but otherwise I see no big difference.

– I think there is a big difference. The latter would give students an even better idea of
how a byte can be interpreted in a lot of different ways, even as an instruction. Also
that way we will have an assembler – showing how it works would be wonderful.

– OK. Is there anything else you have on your mind?
– Well, you must understand that good user interface is crucial. It should not look

complicated because that would repel students. It is also very important that things
are intuitive – a student who can’t do something would probably not persist and just
go away.

– I will have that in mind.

CLab – Analysis Requirements

 11

3. Requirements

3.1. General requirements
This section describes general functionality which the system is expected to have.

• File operations: Load/Save project
• Writing a program: Program editor (with syntax highlighting if possible)
• Running a program: Run/Stop, Step
• Debugging: Breakpoints, watch variable/register values

Teaching assembly language should be one of requirements for the project, but not the
only one. It should be possible to use this system to teach internal workings of a
computer, and the CPU in particular, by showing how different components
communicate with each other and letting the user see exactly what is going on.

3.2. Simulation requirements

Code
The user will develop the program in assembly language and compile it in machine
codes. The virtual CPU will then be able to execute the program.

Memory
The most appropriate memory model will be flat – everything, including code, stack,
data and video memory, in one long array at different offsets. This model is the best
one to show von Neumann machine, and it is the simplest one to write code for.
Memory should be at least 4 kilobytes long.

Storing 16-bit data
All 16-bit data will be stored in RAM in big-endian format, that is the most significant
byte will be stored at the lower memory address.

Stack
Stack should start somewhere around the middle of RAM. It should grow towards the
end of RAM in order to prevent it overwriting user code.

3.3. Detail Levels
As the system will be aimed at different user levels, it should be possible to change
program accordingly. The system should allow the user to choose between Basic
mode and A-level mode. For example, in the Basic mode it should be possible for the
user to write and debug a program without ever knowing that it is compiled at all.

3.4. Instruction set
• Data movement – move data between registers and memory, stack operations
• Arithmetic – addition, subtraction, multiplication etc.

CLab – Analysis Requirements

 12

• Logic – standard operations such as AND, OR, shifts, etc.
• Flags – operations concerning the FLAGS register.
• Branching – conditional/unconditional jumps, subroutine calls, halt.
• Input/output – IO port operations, interrupt operations.

3.5. Registers
• General purpose – used as temporary storage for data
• Special purpose – registers with special meaning, e.g. stack pointer
• Internal registers – cannot be used in programs, but can be viewed

3.6. Addressing modes
• Immediate – target is a number
• Register – target is a register
• Memory – target is a memory cell

3.7. Extra functionality
• Animation of different addressing modes
• Animation on number representation
• Animation of logical and arithmetic shifts

3.8. Security
This system will not contain any sensitive data, and therefore no security is required.

CLab – Analysis Constraints

 13

4. Constraints

4.1. Hardware & Software
The college already has a network of computers set up, so it would be most cost-
effective if this system was able to utilise software and hardware that is already in
place. Below is a summary of a typical machine set up:

Hardware:

• IBM-compatible machine
• AMD/PIII 400MHz
• 64 Mb RAM
• 500Mb+ free HDD space
• Video card, 1024x768+ resolution

The hardware requirements for this system will be up to 10Mb of disk space and a
minimum 1024x768 resolution video card.

Software:

• Windows 2000 / Windows 98
• Visual Basic 6.0

The only software requirement for this system will be a Win32 operating system.

4.2. CS proficiency
Targeted users of this system will be students, and although they will be Computer
Science students they will still need an easily understandable program. Therefore,
using the program should be as simple as possible, that is, interface should be as
intuitive as possible.

4.3. Feasibility
Taking all requirements and constraints into account, it seems that this project is
feasible. It is technically feasible (technology exists to implement the solution),
economically feasible (enough funds is available to implement it), legally feasible (a
licensed copy of VB will be used, and all extra controls that may be used will be
either freeware or licensed), operationally feasible (it will be relatively easy to
incorporate new teaching methods using this system, and the users should only be
happy to transfer to it).

The project should be completed in about 5 months. Because VB is new to me, I
cannot estimate very well the amount of time necessary to implement the solution, so
I will concentrate on core features at first and then implement optional functionality if
any time is available. That way the project will be schedule feasible.

CLab – Analysis Constraints

 14

5. Objectives

The main objective of this project is to provide an interactive teaching tool which can
be used in Computing lessons to demonstrate computer science concepts and give
students some hands-on experience. The system will have to meet three distinct needs.
One is to demonstrate operation of internal components of a computer, especially the
CPU. Another objective is to provide a fully functional fool-proof and easy-to-use
assembly language simulator. The third requirement is to provide a set of interactive
simulations (e.g. sorting algorithms). This requirement is optional and depends on
how much time will be available.

It is difficult to assess the system from its teaching potential point of view because it
is hard to judge how much this program contributed towards a particular student’s
achievement. Therefore, project’s success should be analysed based on its usability.
This project should be considered successful if at least 8 out of 10 students will be
able to write their first ever assembly language program on their first ever encounter
with the system in a 90 minute session with a teacher available to give advice. The
system should also withstand at least half an hour of intentional attempts to make it
crash in order to make sure some students will not be able to crash it to avoid work.

CLab – Design Solution system

 15

6. Solution system

This system should be written in one of the high-level programming languages as its
main characteristics are:

• Is not very speed-critical
• Intuitive user interface is crucial
• Design time is limited
• Funds are very limited
• Relatively advanced programming techniques are required

Several programming languages are available. Below is a summary of these languages
with all their advantages and disadvantages:

Visual Basic 6.0
Advantages:

• Low cost (already available to programmer)
• Rapid application development
• Easy creation of advanced user interface features

Disadvantages:

• Low programming flexibility
• Low efficiency of compiled code
• Programmer has very little experience with it

Delphi 5.0
Advantages:

• Rapid application development
• Easy creation of advanced user interface features
• Programmer has a lot of experience with it
• High programming flexibility
• Good efficiency of compiled code

Disadvantages:

• High cost (license required)
• Executables tend to be big

Microsoft Visual C++
Advantages:

• High programming flexibility
• High efficiency of compiled code
• Comparatively small executables
• Programmer has some experience with it

Disadvantages:

• High cost (license required)
• Takes a lot of time to create good GUI

CLab – Design Solution system

 16

Borland C++ 5.02
Advantages:

• Very high programming flexibility
• High efficiency of compiled code
• Comparatively small executables

Disadvantages:

• High cost (license required)
• A lot of time required to develop applications
• Difficult to create good GUI
• Programmer has little experience with it

Conclusion

Below is a summary of language correspondence to key features:

 Feature (Importance) Best Worst
– Is not very speed-critical (3) VC, Borland C, Delphi, VB
– Intuitive user interface is crucial (8) VB, Delphi, VC, Borland C
– Design time is limited (10) VB, Delphi, VC, Borland C
– Advanced programming is required (6) VC, Borland C, Delphi, VB
– Funds are very limited (7) VB, VC, Delphi, Borland C
– Programmer experience (5) Delphi, VC, VB, Borland C

If every language was assigned points from 3 to 0 depending on how well they match
a requirement, and multiplied by the weight (importance) of the requirement, here are
the totals for the languages:

VB: 0x3 + 3x8 + 3x10 + 0x6 + 3x7 + 1x5 = 80
VC: 3x3 + 1x8 + 1x10 + 3x6 + 2x7 + 2x5 = 69
Delphi: 1x3 + 2x8 + 2x10 + 1x6 + 1x7 + 3x5 = 67
Borland C: 2x3 + 0x8 + 0x10 + 2x6 + 0x7 + 0x5 = 18

Therefore, Visual Basic is more suitable for developing this project than any other
language considered.

Design

The Imaginary Computer

CLab – Design – The Imaginary Computer – Introduction

 18

7. Introduction

This section describes the way the system should work. Every system designed for the
end-user is a lot more complicated on the inside than it seems on the outside. The
same will be true of CLab. Design section will describe the internal workings of a
complex system, so the description will be technical and complicated, with a lot of
subtle details.

I do not see how to avoid this complexity and detail, but moreover, I do not see the
need to do so. The users will only be aware of a fraction of what will be described in
this section.

Note that the system will have several complexity levels, and while at full level the
users will be able to interact with a good deal of all this, in the basic mode they will
only see a tiny fraction.

CLab – Design – The Imaginary Computer – Central Processing Unit

 19

8. Central Processing Unit

The CPU in this system is not going to process commands. It will only be there to
show the users how a real CPU executes a program. Therefore, it doesn’t have to be
fully functional from electronics point of view, but it should show different structural
elements of the CPU and how they interact.

8.1. Architecture

The architecture of this CPU is very loosely based on that of the Z80 processor. The
whole CPU has been designed from scratch with its teaching purpose always being
the main guideline.

The major difference between this CPU and real modern CPU architectures will be
that no steps are taken to optimize and speed up program execution in order to keep
the structure as simple as possible.

Buffer
MDR Data bus

Buffer
MAR

Address bus

Registers

B
C
D
E

SP

IP

Addressing

ALU

ACC FLAGS

Buffer
Control bus

Control Unit

LEA

+1/2

 Fig.6.1. CPU diagram

In this diagram, the Control Unit is the main section that does all the “clever” work of
the CPU. Its internal structure is hidden because it is too advanced for the level this
system is aimed for. Control Unit will run the fetch-decode-execute cycle,
coordinating all components around it.

All components of the CPU are connected to the Internal Data Bus (IDB). Control
Unit uses it to transfer data between itself and components such as registers or the
ALU. It also uses it to interact with the world outside the CPU via MDR and Data Bus
Buffer, including fetching instructions and port I/O operations.

CLab – Design – The Imaginary Computer – Central Processing Unit

 20

 Internal Address Bus (IAB) is connected to the Control Unit through the
Addressing component. Addressing component is an adder which, in response to
Control Unit’s directions, adds together one or more pieces of data that are connected
to it in order to obtain a full absolute address for operations with memory. It outputs
the resulting address directly to the Internal Address Bus and indirectly (at Control
Unit’s discretion) to the Address Bus outside the CPU.

 Internal Control Bus is not shown in the diagram as it would overload it. There is a
network of signals going to each component in the CPU which tell components when
and what to do. For example, there are such signals as Select, Read and Write going
to the Registers component. They allow Control Unit to choose on which register to
operate, and then whether that register should read the data from the IDB or write
what it contains to the IDB. Another example would be a signal going to the
Addressing component telling it that it should add, say, B register and value on the
IDB together.

 ALU stands for the Arithmetic Logic Unit, and, as the name suggests, it is
responsible for all arithmetic and bitwise calculations. It can do following arithmetic
operations: add, subtract, multiply, divide, take remainder from division,
increment/decrement, change sign, arithmetic shift. Among its bitwise operations are:
AND, OR, XOR, NOT, and logical shifts. If it takes two operands, one always has to
be the Accumulator register.

The ±1/2 component is a separate adder which can add or subtract 1 or 2 from IP
and SP registers. This is a very frequent operation, so it would not be wise to do it
through the ALU.

The MDR and MAR registers (Memory Data Register and Memory Address
Register) hold the data that has arrived from the respective internal or external bus,
and can also output that data to either of the buses. These registers are used in
operations with external buses. Some operations also use them as temporary storage.

The LEA section (Load Effective Address) is a link between the IAB and IDB.
Sometimes, when an effective address has been calculated by the Addressing section,
the address needs to be used rather than transferred to the external Address Bus. The
LEA section is responsible for transferring the address from the IAB to IDB. As soon
as the address is on IDB, it can be saved in any register or used otherwise.

8.1.1. Memory models
To simplify the project, only one memory model will be supported – flat memory
model. Segmented memory model, although mentioned in A-level course, is not really
studied at all, so it would be better to reduce program functionality with no negative
effect on the users, while greatly increasing program simplicity, which is very
important for the users. In flat model RAM is seen as a single long block of data. In
this project RAM will be 64 Kb long. Anything can be stored anywhere. Though,
some memory areas will have a special meaning. Program execution will begin at
address 0, so the beginning of RAM will act like a code segment. Stack pointer will

CLab – Design – The Imaginary Computer – Central Processing Unit

 21

be initialised to address 6000h and will grow upwards, so area of RAM from 6000h
onwards will act like a stack segment. Video memory will be initialised to addresses
E000h-EFFFh. And finally, the last 256 bytes of RAM will be used for interrupt
vectors table. All this will be discussed in detail further in this document.

8.1.2. Addressing modes
The CPU will support three basic addressing modes, one of which will be split into
four sub-modes. The modes are listed below:

• Immediate. The operand is a numerical constant, 8 or 16 bits.
• Register. The operand is a register.
• Memory. The operand is a memory cell. Is subdivided into following:

o Direct (Immediate)
o Indirect (via Register)
o Indirect (via Immediate)
o Indexed

 Direct (Immediate) mode points at a memory cell whose address is specified as a
16-bit immediate constant. The absolute address calculated is the value of the
immediate constant.

 Indirect (via Register) mode points at a memory cell whose address is held in a
register. The absolute address calculated is the value held in the register.

 Indirect (via Immediate) mode points at a memory cell whose address is held in
another memory cell (intermediary cell). The address of the intermediary cell is
specified as a 16-bit immediate constant. The CPU loads contents of the intermediary
cell and uses it as the final absolute address.

 Indexed mode allows the program to specify an expression to calculate the required
address. The Addressing section of the CPU can add together B register (offset), a 16-
bit immediate constant (another offset) and a general purpose register multiplied by 1,
2 or 4 in order to calculate the effective address.

8.1.3. Registers
As shown in fig.1, there will be several registers which the CPU will utilise to execute
a program. They are divided into sections by type, and their meaning is described
below.

General purpose
These registers are used as a temporary storage for data. They are all 16 bits wide.

Name Description
A Accumulator. This register is involved in operations with the ALU (it has to be one of the

operands in two-operand operations). Some operations are shorter when they use the
accumulator.

CLab – Design – The Imaginary Computer – Central Processing Unit

 22

B General purpose register. Also used as base register in memory addressing.
C General purpose register.
D General purpose register.
E General purpose register.

Special purpose
These registers have a special meaning, e.g. to show where the next program
instruction is. They can’t be used as sources or destinations in most operations.
Though they will be used by some operations indirectly. They are all 16 bits wide.

Name Description
PC Program counter. The next instruction to be executed starts at address stored in PC. Can be

modified indirectly by jump instructions.
SP Stack Pointer. The next empty cell in stack is at address stored in SP. Used indirectly by stack

operations.
FLAGS Flags register. Contains information about current CPU state or the result of some operations.

Flags map can be found below.

Flags
In the FLAGS register, the low-order byte will contain the basic flags, and the high-
order byte will contain auxiliary flags which will help students learn but will not be
used by the system otherwise.

Low-order byte High-order byte
0 1 2 3 4 5 6 7 8 9 A B C D E F
z s o c i n p

z – zero flag. Is set every time the result of a calculation is zero.
s – sign flag. Is always equal to the high-order bit of the result.
o – overflow flag. Set when operation causes a carry into OR out of high-order bit.
c – carry flag. Set when operations cause a carry out of high-order bit.
i – interrupts flag. When this flag is cleared, processor ignores all interrupts

n – negative flag. Is set when result is negative. n = s and not z
p – positive flag. Is set when result is positive. p =not(s or z) =not s and not z

Internal registers
These registers cannot be used in programs, but can be viewed. They will be
contained inside the CPU, and an assembly language programmer will not need to
know that they exist at all. But they are crucial to understand how the CPU works.

All registers under the thick line are contained within the Control Unit, all others are
outside the Control Unit but inside the CPU.

Name Description
MAR Memory Address Register. Acts as a link between the internal CPU address bus and the

external address bus.
MDR Memory Data Register. Acts as a link between the internal CPU data bus and the external

data bus.
CIR Current Instruction Buffer. Accumulates instruction to be decoded and executed over several

fetch cycles (for multi-byte instructions).

CLab – Design – The Imaginary Computer – Central Processing Unit

 23

IS Interrupt Status. Contains a bit for every hardware interrupt, indicating whether that interrupt
is pending or not.

8.2. Input/output

8.2.1. Interrupts
The CPU will support software and hardware interrupts. Each external device will be
connected to an Interrupt Request line (IRQ) and to an Interrupt Acknowledge line
(INTA), which are separate for every device. When a device wants to send an
interrupt request, it will send a signal down its IRQ. If the CPU decides to process it,
it will send an INTA signal back. The project will allow for up to 16 external devices,
so there will be 16 IRQ lines, for interrupt request numbers 0 to 15.

Interrupt requests will have different priorities. IRQ0 will have the highest priority,
and IRQ15 – the lowest priority.

Interrupt request number (IRQ) and actual interrupt number that the IRQ generates
(INT) are two different concepts, and do not always match in real computers. For
example, in IBM-compatible computers IRQ0 (timer) generates INT8, and IRQ1
(keyboard data ready) generates INT9. But because at A-level these concepts are not
differentiated, they will be hidden from the user in this project, and IRQ0 to IRQ15
will always invoke interrupts 0 to 15 respectively.

There will be a special register in the CPU to store pending interrupts. The register
will be called IS for Interrupt Status. It will have one bit for every one of the 16
hardware interrupts. If a bit is set, then a respective interrupt has been requested and
accepted by the CPU.

When the CPU receives an interrupt request, it will first check whether interrupts are
allowed. Programs will be able to allow or disallow hardware interrupts with special
instructions. If interrupts are allowed and the corresponding bit in IS is cleared then
the CPU will accept the interrupt request by sending INTA signal to the requesting
device and set the corresponding bit in IS.

Having completed an instruction, the CPU will check whether any of the IS bits is set
to zero. Interrupt 0 will have the highest priority, and interrupt 15 – the lowest.
Therefore, the CPU will start checking bits from 0 to 15. If a bit is set, the CPU will
initiate the interrupt.

To initiate a hardware interrupt, the CPU will first clear that interrupt’s bit in IS. It
will then push PC and FLAGS on stack, clear the Interrupts Flag in FLAGS register, and
jump to a respective interrupt handler. Interrupt handlers will end with a special
instruction, which will pop FLAGS and PC from stack.

There will be an Interrupt Vector Table of size 256 bytes in RAM which will store
effective addresses of interrupt service procedures (ISPs) for respective interrupts.
This table will start at address 0FF00h (for interrupt 0) and end at 0FFFEh (for
interrupt 127) and contain 16-bit absolute addresses of respective ISPs.

CLab – Design – The Imaginary Computer – Central Processing Unit

 24

Software interrupts, unlike hardware interrupts, will be called by programs
themselves, and cannot be disabled. Programs will invoke them with a special
instruction, specifying which interrupt number they want to invoke. It will be possible
to invoke any interrupt, from 0 to 127. The procedure for invoking software interrupts
will be the same, except for the fact that Interrupts Flag will be left intact by the CPU.

Clearing the “interrupts allowed” flag will not cancel pending interrupts. It will only
forbid acceptance of new hardware interrupts. As said above, this flag will have no
effect on software interrupts.

8.2.2. I/O ports
The CPU will support operations with input/output ports. There will be 256 I/O ports.
All devices outside the CPU will communicate with the CPU using input/output ports.

If a program wants to receive data from a device, it will use a special instruction
which will cause the CPU to put port number on the Address Bus and send a “port
read” signal down the Control Bus. External devices, on receiving this signal, will test
the Address Bus to see if their port number was specified. If they decide that they
want to respond to this port read operation, they put one word of data on the Data
Bus. That is the data that the destination of the instruction will receive.

If a program wants to send data to an external device, it will call another instruction
which will cause the CPU to put port number on the Address Bus, the specified data
on the Data Bus, and send a “port write” signal down the Control Bus. On receiving
this signal, external devices will check if their port number was specified, and take the
data from the Data Bus if they decide to.

The computer will be set up in such a way that no two devices use same port numbers.
In this case this is not a major concern because the virtual “computer” will be set up
by the system developer once, with all ports assigned to devices without clashes, and
the user need not be aware of that. See (Peripherals.Architecture) section to read more
about external devices and their ports.

CLab – Design – The Imaginary Computer – Central Processing Unit

 25

8.3. Instruction set
Below is a list of instructions that the CPU will support, with their arguments
(operands) and a description of what they do.

Operand types

M memory (any addressing mode),
R register (A, B, C, D or E),
Rn register (B, C, D or E),
A accumulator,
I 16-bit immediate,
I8 8-bit immediate,
N immediate as part of the machine code.

8.3.1. Data movement
These instructions move data between registers and memory. They also include stack
operations. None of these modify the FLAGS register.

Name Arguments Description
ld dest, src Copies contents of src to dest. Allowed dest/src combinations: R/R, R/M,

R/I, M/R.
st src, dest Copies contents of src to dest. Allowed src/dest combinations: R/R, M/R,

I/R, R/M.
push src Copies contents of src to [SP], then increments SP by 2. Src is type R or I.
pop dest Decrements SP by 2, then copies contents of [SP] to dest. Dest is type R.
pushpc - Pushes PC register onto stack, pointing to after the pushpc instruction.
pushsp - Pushes SP register onto stack. SP value before this operation is pushed.
pushfl - Pushes FLAGS register onto stack.
popsp - Pops SP register from stack.
popfl - Pops FLAGS register from stack.
sp2b - Copies the contents of SP register into B register. Used to access parameters

that are passed on stack quickly.
lea dest, src Load effective address. Allowed dest/src combinations: Rn/M. Loads the

address calculated for src into register dest.
xchg r1, r2 Swaps values in registers r1 and r2 so that value in r1 goes to r2 and vice

versa. r1 and r2 are type Rgn.

8.3.2. Arithmetic
These instructions do addition, subtraction, multiplication etc. All of these set the
FLAGS register (flags z, s, o, c; n, p) according with the result.

Name Arguments Description
add addto,

addwhat
Adds addwhat to addto, saves result in addto. Allowed addto/addwhat
combinations: A/I, A/M, A/R, R/A.

sub subfrom,
subwhat

Subtracts subwhat from subfrom, saves result in subfrom. Allowed
subfrom/subwhat combinations: A/I, A/M, A/R, R/A.

adc addto,
addwhat

Adds addwhat, addto and carry, saves result in addto. Allowed addto/addwhat
combinations: A/I, A/M, A/R, R/A.

CLab – Design – The Imaginary Computer – Central Processing Unit

 26

sbb subfrom,
subwhat

Subtracts subwhat from subfrom, then subtracts carry from the result, saves
final result in subfrom. Allowed subfrom/subwhat combinations: A/I, A/M, A/R,
R/A.

cmp left, right Compares left with right and sets flags so that conditional jumps work
correctly. E.g. if left<right then JL will do a jump. The opeartion subtracts
right from left and discards the result. Allowed left/right combinations:
A/I, A/M, A/R, R/A.

mul arg1, arg2 Multiplies arg1 by arg2. Saves result in arg1. Treats values as unsigned
integers. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.

div num, denom Divides num by denom, saves the integer part of the result in num. Interprets num
and denom as unsigned integers. Allowed num/denom combinations: A/I, A/M,
A/R, R/A.

imul arg1, arg2 Multiplies arg1 by arg2. Saves result in arg1. Treats values as signed integers.
Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.

idiv num, denom Divides num by denom, saves the integer part of the result in num. Interprets num
and denom as signed integers. Allowed num/denom combinations: A/I, A/M, A/R,
R/A.

mod num, denom Divides num by denom, saves the remainder part of the result in num. Interprets
num and denom as unsigned integers. Allowed num/denom combinations: A/I,
A/M, A/R, R/A.

inc arg Increments arg, that is adds 1 to it. Arg is type R.
dec arg Decrements arg, that is subtracts 1 from it. Arg is type R.
neg arg Reverses the sign of arg. This is equivalent to not arg; inc arg; but occupies

only one byte. Arg is type R.

8.3.3. Bitwise
Bitwise operations such as AND, OR, shifts, etc. All of them modify the FLAGS
register (flags z, s, c; n, p) according with the result.

Name Arguments Description
not arg Bitwise NOT – inverts all bits in arg. Arg is type R.
and arg1, arg2 Bitwise AND. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.
or arg1, arg2 Bitwise OR. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.
xor arg1, arg2 Bitwise XOR. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.
test left, right Performs a bitwise AND operation on left and right and sets the flags

according with the result. Result itself is discarded. A/I, A/M, A/R, R/A.
lshr arg, num Shifts3 bits in arg by num to the right. Low-order bit goes to carry, high-order

bit becomes zero. Allowed arg/num combinations: A/Rn, Rn/N.
lshl arg, num Shifts3 bits in arg by num to the left. High-order bit goes to carry, low-order bit

becomes zero. Allowed arg/num combinations: A/Rn, Rn/N.
ashr arg, num Shifts3 bits in arg by num to the right. Low-order bit goes to carry, high-order

bit stays the same. Allowed arg/num combinations: A/Rn, Rn/N.
ashl arg, num Entirely equivalent to lshl.
ror arg, num Rotates3 bits in arg by num to the left. Low-order bit goes to high-order bit and

carry. Allowed arg/num combinations: A/Rn, Rn/N.
rol arg, num Rotates3 bits in arg by num to the left. High-order bit goes to low-order bit and

carry. Allowed arg/num combinations: A/Rn, Rn/N.
rcr arg, num Rotates3 bits in arg by num to the left through carry. Carry goes to high-order

bit and low-order bit goes to carry. Allowed arg/num combinations: A/Rn, Rn/N.
rcl arg, num Rotates3 bits in arg by num to the left through carry. Carry goes to low-order bit

and high-order bit goes to carry. Allowed arg/num combinations: A/Rn, Rn/N.
bswp src Swaps bytes in src so that the high-order byte becomes the low-order byte and

vice versa. Src is type R.

CLab – Design – The Imaginary Computer – Central Processing Unit

 27

8.3.4. Flags
These operations are used to modify the FLAGS register.

Name Arguments Description
stz - Sets zero flag.
clz - Clears zero flag.
stc - Sets carry flag.
clc - Clears carry flag.
sto - Sets overflow flag.
clo - Clears overflow flag.
sts - Sets sign flag.
cls - Clears sign flag.
sti - Sets interrupt flag.
cli - Clears interrupt flag.

8.3.5. Branching
These are all operations that change execution order. They change IP register (and CS
where applicable), so the next instruction to be executed changes as well.

Name Arguments Description
jg,
jnle

addr Jumps to addr if z = 0 and s = o. Addr is an absolute address of type M.

jl,
jnge

addr Jumps to addr if s <> o. Addr is an absolute address of type M.

jge,
jnl

addr Jumps to addr if s = o. Addr is an absolute address of type M.

jle,
jng

addr Jumps to addr if z = 1 and s <> o. Addr is an absolute address of type M.

jz,
je

addr Jumps to addr if z = 1. Addr is an absolute address of type M.

jnz,
jne

addr Jumps to addr if z = 0. Addr is an absolute address of type M.

jc addr Jumps to addr if c = 1. Addr is an absolute address of type M.
jnc addr Jumps to addr if c = 0. Addr is an absolute address of type M.
jo addr Jumps to addr if o = 1. Addr is an absolute address of type M.
jno addr Jumps to addr if o = 0. Addr is an absolute address of type M.
js addr Jumps to addr if s = 1. Addr is an absolute address of type M.
jns addr Jumps to addr if s = 0. Addr is an absolute address of type M.
jmp addr Unconditional jump. Addr is an absolute address of type M.
call addr Pushes IP registers onto stack; then jumps to addr. Addr is an absolute

address of type M.
ret - Pops data from stack to IP (i.e. does a jump to address on stack)
int num Initiates software interrupt num. Num is type I8.
iret - Return from interrupts handlers. Pops FLAGS and IP from stack.
halt - Brings processor to a halt. In this project this instruction will stop simulation.

8.3.6. Input/output
This section contains operations that send and receive data via input/output ports.

Name Arguments Description

CLab – Design – The Imaginary Computer – Central Processing Unit

 28

in dest, prt Reads data from port prt and places it to dest. Dest/prt can be following
combinations: R/R, R/I8.

out prt, src Writes data src to port prt. Allowed prt/src combinations: R/R, R/I, I8/R,
I8/I.

8.3.7. Other

Name Arguments Description
nop - No operation. The CPU goes on to fetch next instruction after fetching this one.

8.3.8. Notes

3 Shifts/rotations with num greater than 1 are equivalent to several shifts/rotations by
1. Only 4 low-order bits matter in num operand. Therefore, the maximum number of
shifts/rotates in one operation is 15 and the minimum is 0.

CLab – Design – The Imaginary Computer – Central Processing Unit

 29

8.4. Machine codes

When an assembly language program is assembled, it will be converted into machine
codes. The CPU will be able to understand only those codes. This section describes
the format of machine codes which this CPU will use, including instruction codes,
operand formats etc.

8.4.1. Conventions

All instructions will be listed in a table containing the following fields: Instruction,
Binary, Hexadecimal, Length and Operands.

Instruction field
This field will contain assembly language instruction with operands. Part of the
Instruction field will be in bold dark red font – that is the part coded in the first
instruction byte. Bright red font will show the part described in extra bytes.

Binary and Operands field
The operands will be shown in bright red font in the Operands field. Each bit of the
machine code (including the first byte) may be shown as 1, 0 or a lower-case letter.
Letters will be used to show that several different options are available and their
meaning is described in the Operands field. Also, a combination of upper-case letters
can be used to describe a whole byte in Operands. Underscore _ will separate bits in
the same byte, forward slash / will separate bytes.

Operand types
Operands shown in the Instruction field consist of a mnemonic followed by a list of
operand types. Operand types can consist of one to three letters, optionally followed
by a number when there are two operands of the same type. Allowed types are:

M memory (any addressing mode),
R register (A, B, C, D or E),
Rn register (B, C, D or E),
A accumulator,
I 16-bit immediate,
I8 8-bit immediate,
N immediate as part of the machine code.

Memory addressing
Wherever an operand is a pointer to a memory cell, one or more bytes will be added
to the end of the whole instruction. They can describe any addressing mode available,
and will be shown as type M in the Instruction field. Nothing will be said about it in
the Operands field other than to show their presence with the MEM word. The structure
of those bytes is described in section (Memory Addressing Bytes) below.

CLab – Design – The Imaginary Computer – Central Processing Unit

 30

8.4.2. Registers
All general purpose registers except the will have a binary ID code associated with
them. This code will be used as part of instructions to show that a specific register
should be used. The IDs are as follows:

Name Binary ID
B 000
C 001
D 010
E 011

The accumulator doesn’t have an ID associated with it. This is due to the architecture
of the CPU – as can be seen in fig.1, the accumulator stands very separate from the
other registers – inside the ALU block. Either a separate instruction or a separate bit is
required to specify operations on the accumulator.

8.4.3. Memory addressing bytes
In all instructions operating on memory addresses at least one byte will be added to
the end of the machine code describing the way the address should be calculated. The
CPU will use this first byte to decide which addressing mode it is dealing with. The
format of this byte and other bytes if any is described below. In all format descriptions
question mark ? will represent an unused bit, which does not matter and can be set to
anything. Square brackets [] will enclose optional bytes. For a description of memory
addressing modes, refer to (CPU.Architecture) section.

Direct (via Immediate)
The length will always be 3 bytes. The format is as follows:

00_?????_0 /Y1 /Y2
Bytes Y1Y2 are the offset constant.

Indirect (via Immediate)
The length will always be 3 bytes. The format is as follows:

00_?????_1 /Y1 /Y2
Bytes Y1Y2 are the offset constant.

Indirect (via Register)
The length will always be 1 byte. The format is as follows:
 01_????_rr
RR is the binary ID code for the register used.

Indexed
The length will vary from 1 to 3 bytes. The format is as follows:
 1_b_p_?_mm_rr [/Y1 /Y2]
B specifies whether to use the base register (1 means use). P specifies if any offset
bytes are present (1 means they are). RR specifies the binary ID for the offset register.
MM is the scaling factor – 00 if RR should not be taken into account, 01 if it is to be
multiplied by 1, 10 – by 2, 11 – by 4. Y1Y2 is the offset constant.

CLab – Design – The Imaginary Computer – Central Processing Unit

 31

8.4.4. Instructions

Instruction Binary Hex Len Operands
adc A,I 1000 0111 87 3 Y1/Y2. Y1Y2 is the constant I.
adc A,M 1000 1000 88 2-5 MEM.
adc A,R 1000 0110 86 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
adc R,A 1000 0110 86 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
add A,I 1000 0001 81 3 Y1/Y2. Y1Y2 is the constant I.
add A,M 1000 0010 82 2-5 MEM.
add A,R 1000 0000 80 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
add R,A 1000 0000 80 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
and A,I 1011 0001 B1 3 Y1/Y2. Y1Y2 is the constant I.
and A,M 1011 0010 B2 2-5 MEM.
and A,R 1011 0000 B0 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
and R,A 1011 0000 B0 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
ashl A,Rn 1100 0010 C2 2 0_xx_?_????. xx is ID for Rn.
ashl Rn,N 1100 0010 C2 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
ashr A,Rn 1100 0011 C3 2 0_xx_?_????. xx is ID for Rn.
ashr Rn,N 1100 0011 C3 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
bswp A 1001 1111 9F 1 -
bswp Rn 1101 11xx DC-DF 1 xx is ID for Rn.
call M 0111 0001 71 2-4 MEM.
clc 0101 0111 57 1 -
cli 0111 0111 77 1 -
clo 0110 0101 65 1 -
cls 0110 0111 67 1 -
clz 0101 0101 55 1 -
cmp A,I 1000 1101 8D 3 Y1/Y2. Y1Y2 is the constant I.
cmp A,M 1000 1110 8E 2-5 MEM.
cmp A,R 1000 1100 8C 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
cmp R,A 1000 1100 8C 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
dec A 1010 1101 AD 1 -
dec Rn 1010 01xx A4-A7 1 xx is ID for Rn
div A,I 1001 0100 94 3 Y1/Y2. Y1Y2 is the constant I.
div A,M 1001 0101 95 2-5 MEM.
div A,R 1001 0011 93 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
div R,A 1001 0011 93 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
halt 0111 0101 75 1 -
idiv A,I 1001 1010 9A 3 Y1/Y2. Y1Y2 is the constant I.
idiv A,M 1001 1011 9B 2-5 MEM.
idiv A,R 1001 1001 99 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
idiv R,A 1001 1001 99 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
imul A,I 1001 0111 97 3 Y1/Y2. Y1Y2 is the constant I.
imul A,M 1001 1000 98 2-5 MEM.
imul A,R 1001 0110 96 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
imul R,A 1001 0110 96 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
in A,I8 1110 0101 E5 2 Y. Y is the constant I8.
in Rg1,Rg2 1110 0100 E4 2 00_a1_a2_xx_yy. xx is ID for Rg1, yy is ID for Rg2. a1=1

makes Rg1 accumulator, a2=1 – Rg2.
in Rgn,I8 1101 10xx D8-DB 2 Y. Y is the constant I8. xx is ID for Rgn
inc A 1010 1100 AC 1 -
inc Rn 1010 00xx A0-A3 1 xx is ID for Rn
int I8 0111 0100 74 2 Y. Y is the constant I8.

CLab – Design – The Imaginary Computer – Central Processing Unit

 32

Instruction Binary Hex Len Operands
iret 0111 0011 73 1 -
jc M 0101 0010 52 2-4 MEM.
jg M 0100 0000 40 2-4 MEM.
jge M 0100 0011 43 2-4 MEM.
jl M 0100 0010 42 2-4 MEM.
jle M 0100 0001 41 2-4 MEM.
jmp M 0111 0000 70 2-4 MEM.
jnc M 0101 0011 53 2-4 MEM.
jno M 0110 0001 61 2-4 MEM.
jns M 0110 0011 63 2-4 MEM.
jnz M 0101 0001 51 2-4 MEM.
jo M 0110 0000 60 2-4 MEM.
js M 0110 0010 62 2-4 MEM.
jz M 0101 0000 50 2-4 MEM.
ld A,I 0010 0100 24 3 Y1/Y2. Y1Y2 is the constant I.
ld M,R 0010 0111 27 3-5 ?????_axx/MEM. xx is ID for R. A makes R accumulator.
ld R,M 0010 0110 26 3-5 ?????_axx/MEM. xx is ID for R. A makes R accumulator.
ld R1,R2 0010 0101 25 2 a1_a2_?xx_?yy. xx is binary ID for R1, yy – for R2, a1 makes

R1 accumulator, a2 – R2.
ld Rn,I 0010 00xx 20-23 3 Y1/Y2. xx is binary ID for Rn, Y1Y2 is the constant I.
lea A,M 0000 1100 0C 2-4 MEM.
lea Rn,M 0000 10xx 08-0B 2-4 MEM. xx is ID for Rgn.
lshl A,Rn 1100 0000 C0 2 0_xx_?_????. xx is ID for Rn.
lshl Rn,N 1100 0000 C0 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
lshr A,Rn 1100 0001 C1 2 0_xx_?_????. xx is ID for Rn.
lshr Rn,N 1100 0001 C1 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
mod A,I 1001 1101 9D 3 Y1/Y2. Y1Y2 is the constant I.
mod A,M 1001 1110 9E 2-5 MEM.
mod A,R 1001 1100 9C 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
mod R,A 1001 1100 9C 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
mul A,I 1001 0001 91 3 Y1/Y2. Y1Y2 is the constant I.
mul A,M 1001 0010 92 2-5 MEM.
mul A,R 1001 0000 90 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
mul R,A 1001 0000 90 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
neg A 1010 1110 AE 1 -
neg Rn 1010 10xx A8-AB 1 xx is ID for Rn
nop 1000 1111 8F 1 -
not A 1010 1111 AF 1 -
not Rn 1011 11xx BC-BF 1 xx is ID for Rn
or A,I 1011 0100 B4 3 Y1/Y2. Y1Y2 is the constant I.
or A,M 1011 0101 B5 2-5 MEM.
or A,R 1011 0011 B3 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
or R,A 1011 0011 B3 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
out A,I 1101 0101 D5 3 Y1/Y2. Y1Y2 is the constant I.
out I8,A 1101 0110 D6 2 Y. Y is the constant I8.
out I8,I 1101 0111 D7 4 Y1/Y2/Y3. Y1 is the constant I8. Y2Y3 is the constant I.
out I8,Rgn 1101 00xx D0-D3 2 Y. Y is the constant I8. xx is ID for Rgn
out
Rg1,Rg2

1101 0100 D4 2 00_a1_a2_xx_yy. xx is ID for Rg1, yy is ID for Rg2. a1=1
makes Rg1 accumulator, a2=1 – Rg2.

out Rgn,I 1110 00xx E0-E3 3 Y1/Y2. Y1Y2 is the constant I. xx is ID for Rgn
pop A 0001 0001 11 1 -
pop Rn 0000 01xx 04-07 1 xx is ID for Rn.
popfl 0001 0111 17 1 -

CLab – Design – The Imaginary Computer – Central Processing Unit

 33

Instruction Binary Hex Len Operands
popsp 0001 0110 16 1 -
push A 0001 0000 10 1 -
push I 0001 0010 12 3 Y. Y is the constant I.
push Rn 0000 00xx 00-03 1 xx is ID for Rn.
pushfl 0001 0101 15 1 -
pushpc 0001 0011 13 1 -
pushsp 0001 0100 14 1 -
rcl A,Rn 1100 0110 C6 2 0_xx_?_????. xx is ID for Rn.
rcl Rn,N 1100 0110 C6 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
rcr A,Rn 1100 0111 C7 2 0_xx_?_????. xx is ID for Rn.
rcr Rn,N 1100 0111 C7 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
ret 0111 0010 72 1 -
rol A,Rn 1100 0100 C4 2 0_xx_?_????. xx is ID for Rn.
rol Rn,N 1100 0100 C4 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
ror A,Rn 1100 0101 C5 2 0_xx_?_????. xx is ID for Rn.
ror Rn,N 1100 0101 C5 2 1_xx_a_nnnn. xx is ID for Rn. If a=1 then Rn is accumulator.

nnnn is the constant N.
sbb A,I 1000 1010 8A 3 Y1/Y2. Y1Y2 is the constant I.
sbb A,M 1000 1011 8B 2-5 MEM.
sbb A,R 1000 1001 89 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
sbb R,A 1000 1001 89 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
sp2b 0000 1111 0F 1 -
st I,A 0011 0100 34 3 Y1/Y2. Y1Y2 is the constant I.
st I,Rn 0011 00xx 30-33 3 Y1/Y2. xx is binary ID for Rn, Y1Y2 is the constant I.
st M,R 0011 0110 36 3-5 ?????_axx/MEM. xx is ID for R. A makes R accumulator.
st R,M 0011 0111 37 3-5 ?????_axx/MEM. xx is ID for R. A makes R accumulator.
st R2,R1 0011 0101 35 2 a1_a2_?xx_?yy. xx is binary ID for R1, yy – for R2, a1 makes

R1 accumulator, a2 – R2.
stc 0101 0110 56 1 -
sti 0111 0110 76 1 -
sto 0110 0100 64 1 -
sts 0110 0110 66 1 -
stz 0101 0100 54 1 -
sub A,I 1000 0100 84 3 Y1/Y2. Y1Y2 is the constant I.
sub A,M 1000 0101 85 2-5 MEM.
sub A,R 1000 0011 83 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
sub R,A 1000 0011 83 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
test A,I 1011 1010 BA 3 Y1/Y2. Y1Y2 is the constant I.
test A,M 1011 1011 BB 2-5 MEM.
test A,R 1011 1001 B9 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
test R,A 1011 1001 B9 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.
xchg A,Rn 1111 00xx F0-F3 1 xx is ID for Rgn.
xchg b,c 1111 0101 F5 1 -
xchg b,d 1111 0110 F6 1 -
xchg b,e 1111 0111 F7 1 -
xchg c,d 1110 0110 E6 1 -
xchg c,e 1110 0111 E7 1 -
xchg d,e 1111 0100 F4 1 -
xor A,I 1011 0111 B7 3 Y1/Y2. Y1Y2 is the constant I.
xor A,M 1011 1000 B8 2-5 MEM.
xor A,R 1011 0110 B6 2 ????_0_a_xx. xx is ID for R. If a=1 then R is accumulator.
xor R,A 1011 0110 B6 2 ????_1_a_xx. xx is ID for R. If a=1 then R is accumulator.

CLab – Design – The Imaginary Computer – Central Processing Unit

 34

CLab – Design – The Imaginary Computer – Central Processing Unit

 35

8.4.5. Instructions allocation
Below is a table showing allocation of instruction codes to different instructions.

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 push b push c push d push e pop b pop c pop d pop e lea b,M lea c,M lea d,M lea e,M lea a,M sp2b

10 push a pop a push I pushpc pushsp pushfl popsp popfl

20 ld b,I ld c,I ld d,I ld e,I ld a,I ld R,R ld R,M ld M,R

30 st I,b st I,c st I,d st I,e st I,a st R,R st M,R st R,M

40 jg M jle M jl M jge M

50 jz M jnz M jc M jnc M stz clz stc clc

60 jo M jno M js M jns M sto clo sts cls

70 jmp M call M ret iret int I8 halt sti cli

80 add a,RN
add RN,a

add a,I add a,M sub a,RN
sub RN,a

sub a,I sub a,M adc a,RN
adc RN,a

adc a,I adc a,M sbb a,RN
sbb RN,a

sbb a,I sbb a,M cmp a,RN
cmp RN,a

cmp a,I cmp a,M nop

90 mul a,RN
mul RN,a

mul a,I mul a,M div a,RN
div RN,a

div a,I div a,M imul a,RN
imul RN,a

imul a,I imul a,M idiv a,RN
idiv RN,a

idiv a,I idiv a,M mod a,RN
mod RN,a

mod a,I mod a,M bswp a

A0 inc b inc c inc d inc e dec b dec c dec d dec e neg b neg c neg d neg e inc a dec a neg a not a

B0 and a,RN
and RN,a

and a,I and a,M or a,RN
or RN,a

or a,I or a,M xor a,RN
xor RN,a

xor a,I xor a,M test a,RN
test RN,a

test a,I test a,M not b not c not d not e

C0 lshl a,RN
lshl RN,N

lshr a,RN
lshr RN,N

ashl a,RN
ashl RN,N

ashr a,RN
ashr RN,N

rol a,RN
rol RN,N

ror a,RN
ror RN,N

rcl a,RN
rcl RN,N

rcr a,RN
rcr RN,N

D0 out I8,b out I8,c out I8,d out I8,e out RN,RN out a,I out I8,a out I8,I in b,I8 in c,I8 in d,I8 in e,I8 bswp b bswp c bswp d bswp e

E0 out b,I out c,I out d,I out e,I in RN,RN in a,I8 xchg c,d
xchg d,c

xchg c,e
xchg e,c

F0 xchg a,b xchg a,c xchg a,d xchg a,e xchg d,e
xchg e,d

xchg b,c
xchg c,b

xchg b,d
xchg d,b

xchg b,e
xchg e,b

Legend:

Color Category Color Category Color Category

 Data movement Flags Other

 Arithmetic Branching

 Bitwise Input/output

Param Description
R Any register (B, C, D, E)
RN Any register (A, B, C, D, E)
I 16-bit immediate constant
I8 8-bit immediate constant
M Memory addressing

CLab – Design – The Imaginary Computer – Peripherals

 36

9. Peripherals

A computer consists of the CPU at its centre, main memory and peripheral devices
surrounding them. As the purpose of this system is not only teaching people assembly
language but also what different components of a computer do, the system should
show some devices and how they interact with the CPU.

9.1. Computer structure
The structure of the computer being simulated is very simplified. No system devices
are shown at all, and the ones that are shown are those that a typical user would be
aware of plus a component linking them to the CPU known as I/O controller.

The structure of the computer is shown in fig.2.

CPU RAM

Video card

Keybd controller Speaker ctrl

 Fig.7.1. Computer structure

Components shown are: CPU, buses, RAM, video card and screen, keyboard
controller and keyboard, speaker controller and speaker.

CLab – Design – The Imaginary Computer – Peripherals

 37

9.2. CPU
The CPU in the diagram is the Central Processing Unit. A whole section (CPU) was
devoted to describing how it works, so there is nothing else to discuss here.

9.3. Buses
The imaginary computer will use buses as communication lines between the CPU,
RAM and external devices. There will be three buses, just as in a generic computer:

• Data Bus
• Address Bus
• Control Bus

Buses are relatively simple devices, and because this is technical documentation, it is
assumed that the way buses work need not be described. So buses won’t be discussed
any further here.

9.4. RAM
RAM (Random Access Memory) is the place where the program being executed and
its data are stored. Memory organisation is discussed in detail in the
(CPU.Architecture) section.

Memory is connected to data, address and control buses. The sole purpose of the
RAM “device” is to provide the CPU with a place to store the data it needs.
Therefore, RAM supports only two functions: memory read and memory write.

Read
When the CPU wants to read data from memory, it will put the address of the first
byte to be read on the address bus, and then send a Memory Read signal down the
Control Bus. On receiving this signal, the RAM device will read the address from the
address bus and put the two bytes starting at the specified address on the Data Bus.

Write
When the CPU wants to write data to memory, it will put the address of the memory
location where the data is to be written on the address bus, the actual data to be
written on the data bus, and then send a Memory Write signal. On receiving this
signal, the RAM device will read both buses and write the data from the data bus to
the specified address.

9.5. Video controller
Video card is the component linking the monitor and the CPU. Video card will be
assigned several input/output ports to show how the CPU would normally work with
external devices.

The image currently displayed on the screen will be stored in RAM in an area 4096
bytes long. Video controller will have an internal register to store the pointer to the

CLab – Design – The Imaginary Computer – Peripherals

 38

first byte of video memory, which will be E000h by default. The user will be able to
change this register easily, thus allowing for such techniques as page switching.

To give user control as to when a picture is formed and ready to be displayed, video
controller will have a mode in which it does not reflect changes to RAM until
explicitly told to do so. See below for further detail.

Screen modes
There will be several screen modes supported by the video card. The only limitation
imposed on it is that the whole video memory should fit into 4096 bytes. The
following screen modes will be available:

01h: Monochrome text; 1 byte per char; 40x15 characters

Every byte represents one character’s ASCII code.

02h: Color text; 2 bytes per char; 40x15 characters

Every two bytes represent one character’s ASCII code and color. The first byte
in the pair is the character’s ASCII code, the second one – its colour. The color
byte format is: LRGB lrgb, where R, G and B are Red, Green and Blue
components respectively, L is a brightness bit, uppercase means background
color, lowercase – text color.

03h: Monochrome graphics; 1 bit per pixel; 208x156 pixels

Every byte describes eight pixels. If a bit is set, color seen will be white;
otherwise – black.

04h: 16 color graphics; 4 bits per pixel; 104x78 pixels

Every byte describes two pixels. The format is: LRGB, where R, G and B are Red,
Green and Blue components respectively, L is a brightness bit.

05h: 256 color graphics; 8 bits per pixel; 74x55 pixels; paletted

Every byte describes one pixel. The color that is seen on screen will be taken
from a palette array inside the video controller memory which is 256x3 bytes
long. That is the palette memory, which stores three bytes (RGB) for every color
in this mode.

07h: 16M color graphics; 24 bits per pixel; 42x32 pixels

Every three bytes describe one pixel. The format is, RGB where R, G and B are
bytes describing respective colors.

To switch between different modes the programmer will write a word with mode
number to a specific port, described below.

Input/Output ports

Screen mode port 50h
Writing screen mode number to this port will cause the video controller to switch
screen modes. If it receives any other word apart from valid screen mode numbers, it

CLab – Design – The Imaginary Computer – Peripherals

 39

will ignore it. The changes will be reflected immediately, even in manual refresh
mode.

Reading from this port will cause the video controller to return its current screen
mode.

Palette port 51h
To change an entry in the palette array, programs will write two words to this port.
The first one will contain palette entry number in the low-order byte and the red
component in the high-order byte. The second word will contain green and blue
components in low- and high-order bytes respectively. Note that once sent to the
video controller, palette cannot be read from it. Also, palette only influences images
in screen mode 05h.

Memory port 52h
Writing to this port will change the offset to video memory buffer in RAM. The
changes will be reflected immediately. That is, even in manual refresh mode the
screen will be updated to reflect changes to video memory.

If a program reads from this port, it will receive current pointer to video memory.

Refresh port 54h
Writing 0 to this port will disable auto screen refresh, so changes to video RAM will
only be reflected when the programmer wants to. Writing 1 will enable auto screen
refresh, so the screen will be updated every once in a while. Writing anything else
will force the screen to be refreshed.

Reading from this port will return either 0 or 1 to indicate the state of auto refresh.

9.6. Keyboard controller
Keyboard controller will operate through I/O ports. The user will be able to get
pending keys via an input port. Keyboard controller will also send a specific interrupt
every time a key is pressed.

Key In port 60h
The programmer will read from this port to get the pending key code. If no key is
pending, keyboard controller will return 0FFFFh. As soon as a pending key is read
once, keyboard controller will forget about that key. Only one key can be pressed at
one time, and only Key Down events will be recognised. There will be no way of
determining whether a key is still down. This should not be a problem unless someone
decides to write a game in this system. Considering that the interpreter will most
probably be not fast enough for a game, advanced keyboard features should not be
required.

Every time a key is pressed, the keyboard controller will request intterupt 1 (IRQ1). If
accepted by the CPU, this IRQ will cause interrupt 1. If not accepted by the CPU,
controller will keep sending requests and ignoring all key inputs until the request is
successful.

CLab – Design – The Imaginary Computer – Peripherals

 40

Keyboard scancodes
A scancode is the code returned by the keyboard controller when a given key is
pressed. The table of scancodes for this keyboard controller is given below.

Scancode Hex Key
0 00 A
1 01 B
2 02 C
3 03 D
4 04 E
5 05 F
6 06 G
7 07 H
8 08 I
9 09 J
10 0A K
11 0B L
12 0C M
13 0D N
14 0E O
15 0F P
16 10 Q
17 11 R

Scancode Hex Key
18 12 S
19 13 T
20 14 U
21 15 V
22 16 W
23 17 X
24 18 Y
25 19 Z
26 1A .
27 1B Enter
28 1C Spacebar
29 1D =
30 1E 0
31 1F 1
32 20 2
33 21 3
34 22 4
35 23 5

Scancode Hex Key
36 24 6
37 25 7
38 26 8
39 27 9
40 28 Numpad .
41 29 /
42 2A *
43 2B -
44 2C +
45 2D Left
46 2E Right
47 2F Up
48 30 Down
49 31 Circle
50 32 Square
51 33 Triangle

9.7. Speaker
Speaker can be used as a means of giving signals to the user easily. It will be much
easier and faster to switch speaker state than output something on the screen. Speaker
will be operated through a single port – 80h.

Speaker port 80h
Writing 0 to this port will set speaker to the low state. Writing 1 will set speaker to the
high state. Writing any other number will set speaker frequency to 20/65536*W where
W is the word sent to this port.

Reading from this port will return the last word written to this port.

CLab – Design – The Imaginary Computer – Assembly Language

 41

10. Assembly language

Generally, the syntax of assembly language in this project should be as similar to the
one used in the exams as possible. But because not one examining board is consistent
even with its own past papers, this syntax will be only approximately like that in
exams or textbooks.

10.1. Statements
A statement is the smallest unit of division of programs which can be taken out of
context and still have a meaning. The whole statement has to be written on one line,
and there can only be one statement on every line.

The structure of a typical statement is shown below:

[label:] [data | command] [;comment]

Square brackets [] enclose elements that are optional, vertical bar | indicates that
there are two possibilities, and only one can be present. Only spaces or tabs can
separate the elements, but there can be as many of those as needed. Empty lines are
allowed since there is no element which is not optional. No part of assembly language
syntax is case sensitive.

10.2. Labels
A label is a pointer to a part of code which enables the programmer to reference that
part in instructions, letting the compiler do all the calculations. Labels can be used to
reference code to use with jump and call instructions, or they can be used to reference
data in data movement instructions. See (Referencing) for information about how to
reference labels in operands.

A label has to start with a letter and can contain letters, numbers and underscores.
Every label has to end with a colon : followed by at least one space or tab character,
and there can be no whitespace between the name of the label and the colon.

10.3. Data declarations
When a program is compiled, compiler generates code for every operation. To tell
compiler to insert specific bytes in compiled code programmers can use keywords db,
dw or ds. The purpose of these keywords is to reserve some space in the machine code
for data. If the programmer declares a label pointing to that data, the data effectively
becomes a variable. To see how to use variables as operands see sections (Offset
macro) and (Referencing). db stands for “declare byte” and reserves 1 byte of space,
dw – “declare word” and reserves 2 bytes, ds – “declare string”, the number of bytes
depends on the length of the string, between 0 and 255.

Every data declaration keyword should be followed by initialisation sequence to tell
the compiler the initial contents of the data. db should be followed by a numerical
constant that fits into 8 bits, dw – by a numerical constant that fits into 16 bits, ds – by
a string literal, described below. Alternatively, each of these keywords may be

CLab – Design – The Imaginary Computer – Assembly Language

 42

followed by a question mark ? to indicate uninitialised variable. Compiler will then
initialise db and dw with zeroes, and ds – an empty string, reserving no space for it in
the code.

String literals are constants, but unlike numerical constants, string literals can be used
in only one case – to initialise ds data declaration. String literals must be enclosed by
quotation marks ″. Everything between the marks is the value of string literal. Double
quotation marks can be used to include quotation marks as part of string literal’s
value. When compiled, every byte of string literal’s value will be copied directly to
machine code, as is. Note that, although string literals cannot be used where numerical
constants can, variables declared as string constants are completely identical to those
declared as numerical constants.

Because the data will be stored together with the code, the programmer will have to
make sure that data is not executed accidentally.

10.4. Commands
Commands are basic instructions which the CPU can process, written in a form
readable by humans. Every command has the following syntax:

opcode [operand1 [, operand2]]

Opcode is a symbolic form of writing a CPU instruction; it should be one of the
opcodes listed in section (CPU.Instruction Set). Operands should be separated by a
comma, and there has to be at least one space or tab character between opcode and
operand1. More tabs or spaces can be used between the elements if needed. Operands
are described in detail in the next section.

10.5. Operands
Operands can be of the following types:

• Register
• Immediate
• Memory

Register
This operand type corresponds to the Register addressing mode. It can be A, B, C, D, E.
Sometimes only specific registers can be used – it depends on operand. If register is
source, data passed to the instruction is the contents of the register. If register is
destination, result is written to the register.

Registers can appear as separate operands, or can be used as part of memory operands
described below.

CLab – Design – The Imaginary Computer – Assembly Language

 43

Immediate
Immediate operands are numerical constants. Assembly language will support
decimal, hexadecimal and binary numbers. It will have to discern whether a constant
is a byte or word. The syntax is as follows:

integer[h|b]

Integer is any combination of digits from 0 to 9 and letters from A to F, but it has to
start with a digit. If the number is followed by letter h, integer will be interpreted as
a hexadecimal number. If it is followed by b, integer will be interpreted as a binary
number, and integer should consist of 0’s and 1’s only. If it is not followed by either
h or b, integer is interpreted as a decimal number and should contain only digits
from 0 to 9. If the resulting constant is greater than 0FFh, it is always interpreted as a
16-bit constant. If it isn’t, interpretation depends on the opcode.

Negative immediate constants are allowed. They will be stored in two’s complement
format, and the way numbers with the highest bit set are interpreted will depend on
the opcode.

Immediate constants can stand as separate operands, or can be used as part of memory
operands described below.

Memory
Memory type operands are used for indexed, direct and indirect (register/immediate)
addressing. The syntax of each one is described below.

Memory Direct

offset

The whole construction should be enclosed in square brackets [], and no spaces are
allowed between any sections of the construction. Offset is a 16-bit immediate
constant which specifies absolute memory address. Variable name as an operand has
Memory Direct operand type.

Memory Indirect Register

register

The whole construction should be enclosed in square brackets [], and no spaces are
allowed between any sections of the construction. Register specifies the register
holding absolute memory address, and can be B, C, D or E.

Memory Indirect Immediate

offset

The whole construction should be enclosed in double square brackets [[]], and no
spaces are allowed between any sections of the construction. Offset is a 16-bit
immediate constant which specifies absolute memory address. The CPU will first read
the two bytes at [offset] and then use the value read as the final absolute memory
address.

Memory Indexed

CLab – Design – The Imaginary Computer – Assembly Language

 44

[base+]register[*scale][+offset]

The whole construction should be enclosed in square brackets [], and no spaces are
allowed between any sections of the construction. Register specifies the register
holding offset, and can be B, C, D or E. This offset is multiplied by scale, and offset
(16-bit immediate constant) can be added to act as base offset. This parameter is often
specified with the (Offset macro). If this operand is a source, its value is the contents
of the two bytes of memory at the address obtained by calculating the expression. If it
is a destination, the result is saved in the two bytes of memory at the address obtained
by calculating the expression.

10.6. Offset macro
A macro will be supported by the assembly language. Programmers will not be able
to define new macros, like in C. The built-in macro will be called offset. It will take
one parameter – a variable name – and return its absolute address as if an immediate
constant was specified. For example, assuming that my_var is a variable at offset
200h, the following code:

ld a,offset(my_var)

is equivalent to

ld a,200h

The advantage of using macros is that the address at which a variable is stored
depends on the length of all the code preceding that variable. If a programmer uses a
constant to specify its address, he will have to manually recalculate the address every
time it changes, whereas offset macro will do all calculations for the programmer.
The net effect of the substitution is that offset(my_var) is converted to a 16-bit
immediate constant type operand.

10.7. References
A reference is a special operand type which is used to refer to labels. Only absolute
references will be supported in this assembly language for simplicity.

The idea behind references is the same as that behind offset macro – let the compiler
calculate the address. Wherever a memory operand is required, variable name can be
used to specify the address. Compiler will replace that with [offset(varname)] and
compile as described above. The net effect after the substitution is that the variable
name is converted to a direct memory addressing operand.

10.8. Comments
In every line of code, everything that follows a semi-colon ; is completely ignored by
the compiler together with the semi-colon. Every line which is empty or consists of
only spaces or tabs is ignored as well.

Design

The Real Program

CLab – Design – The Real Program – Interface

 46

11. Interface

This section describes the interface of the program – the part that the user will see and
interact with.

It is probably a good idea to design the whole system in such a way that the user sees
the system as a computer, rather than as a program which simulates a computer. This
will be taken into account at all stages of interface design.

11.1. Conventions

Numbers
Whenever a number is shown on screen, the user should be able to change its
representation between binary, decimal signed/unsigned and hexadecimal. All binary
numbers will be followed by a lower-case “b” letter. All hexadecimal numbers will be
followed by a lower-case “h” letter and have an extra zero in front of them if they start
with a letter.

Window types
There will be three basic window types in the system. To indicate that, every picture
of a window in this document will have one of the following icons in the top-left
corner:

 – windows that make the imaginary computer look like a usual PC does.
 – windows that represent internal computer hardware.
 – windows that provide operating system and software facilities, such as assembly

language Integrated Development Environment (IDE), or stack viewer.

11.2. Main window
Main window will be positioned at the top of the screen. It will provide a menu to
load and save the project, run the simulation and change global settings. It will also
provide access to every other window in the system.

Main window will contain a toolbar, giving the user quick access to the most
frequently used functions, such as open/save project, run/pause/stop simulation, and
quick access to system’s windows. Minimizing the main window will minimise all
windows of the system, and closing the main window will shut down the system. The
main window will look something like this:

 Fig.9.2. Main window

 ASMP - noname

File View Simulation Options

CLab – Design – The Real Program – Interface

 47

The menu will have approximately the following structure:
• File

o New project
o Open project
o Save project
o Exit

• View
o A list of all windows in the project, separated into submenus by

category
• Simulation

o Start
o Pause
o Stop
o Reset
o Simulation speed

• Options
o Complexity level
o Number format

11.3. Computer window
This window will simulate the end-user computer. The user will be able to see the
computer as if they were sitting in front of a real PC, with a keyboard and a monitor in
front of them. They will be able to start or reset a program, and to interface with a
running program.

1 2 3
4 5 6
7 8 9

0

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M .

.

+

-/ *

=

 Fig.9.3. Computer window

The user will be able to press any key on the keyboard, which will be sent to the
program in an appropriate way. When the user presses a key, that key will become red
for a fraction of a second, so that the user knows the key has been pressed.

 Computer

Start

Reset

CLab – Design – The Real Program – Interface

 48

11.4. Monitor window
This window will duplicate the monitor on the computer window. Apart from the fact
that it can be moved around more easily, it will provide scaling facilities and some
manual monitor operations such as manual mode switching. The window will look
something like this:

 Fig.9.4. The Monitor window

The caption of this window will contain information about the current screen mode.
The window will be sizable, so that the user will be able to change the scale if
necessary. Right-clicking on the window will bring up a popup menu with the
following structure:

• Screen mode
o 1 – Monochrome text
o 2 – Color text
o 3 – Monochrome graphics
o 4 – 16 color graphics
o 5 – 256 color graphics (paletted)
o 6 – 65k color graphics
o 7 – 16M color graphics

• Scale
o 200%
o 400%
o 800%

• View video RAM (brings up the RAM window)
• View controller (brings up the Video Controller window)

11.5. Keyboard window
This window will duplicate the keyboard in the computer window. The main
advantage of having this window separately from the main window is that in this way
the keyboard can be placed wherever the user wants to see it.

A possible keyboard window layout is shown below:

 Monitor – (06h): 52x39, 16bpp (65K colors)

CLab – Design – The Real Program – Interface

 49

 Fig 9.5. Keyboard

The caption of the window will contain information about currently pressed key. That
key will also be highlighted with red color. The user will be able to press keys with
the left mouse button. Only one key can be pressed at a time.

11.6. Speaker window
This window will just be a tiny window to indicate current state of the speaker. There
is a chance that producing real sound through PC speaker will not be possible under
VB, so the speaker will flash rapidly to indicate sound.

11.7. RAM window
The RAM window will allow to view and edit the Random Access Memory. It will
have to provide such facilities as finding a specific part of memory, jumping to
specific addresses (such as current Stack Pointer), show selected byte(s) as different
data types (numbers in all representations, disassembled instruction).

The RAM window will consist of two main parts – the memory table and the
interpretation panel.

 Fig.9.7. RAM window

The memory table will display a part of the RAM contents. It will have a fixed
column displaying row address and a fixed row to display byte offset within the row.

 Keyboard – “J” (28h)

 RAM

 8 bit 16 bit Disassembled:
Hex B5h B5C5h or a, [ds:380h+c*2]
Dec 181 46533 [ds:3A6h] is 52FFh
SDec -75 -19002 AB DB CB
Bin 1011 0101b 1100 0101b

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0000 EF 02 48 89 44 24 24 75 CA 8B 7C 24 3C 8B 54 24
0010 38 8B 5C 24 10 8B 74 24 18 8B 4C 24 14 8B 44 24
0020 7F 85 81 C3 02 C0 00 00 BD 00 00 00 80 66 85 DB
0030 89 5C B5 C5 A0 03 80 6C 24 30 75 29 8D 54 24 28
0040 52 E8 6A ED FF FF 00 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

CLab – Design – The Real Program – Interface

 50

The main part will show the byte at the corresponding address. The user will be able
to move a cursor around the table. The cell with the cursor will be called the current
cell and filled with blue. The bytes that would make an instruction starting from the
current byte will be shown in blue font. Bytes pointed at by PC and SP register values
will be highlighted with red and green background respectively. The beginning of
every new segment will be highlighted with an aqua colored row indicating segment
number.

The interpretation panel is the top part of the RAM window. The user will be able to
choose to show it or hide it. It will show the interpretation of the current byte (and the
one that follows) in different number bases and formats for 8 bit values (16 bit
values). It will also disassemble and display the instruction that the CPU would
execute if IP was pointing at the current byte.

When the user right-clicks anywhere in the window, a popup menu will appear with
the following structure:

• Show interpretation panel
• Jump to…

o …Current PC
o …Current SP
o Stack
o Video Memory

• Set…
o …PC to current byte
o … SP to current byte

• Fill
• Cut
• Copy
• Paste

• Open stack
• Open variables
• Open disassembler

11.8. Buses
The buses window is intended to show at all times what data is currently going
through the buses. It will show the actual data going through the buses and its textual
interpretation (where applicable). By right-clicking in the window the user will be
able to change number representation (binary, decimal signed/unsigned, hex), and
show/hide a special panel which would show a small circle for every wire on every
bus, red if a wire is in high logical state and blue for low state. This should help the
user to understand the bus concept easily.

When many windows representing actual components are displayed on the screen,
they need to be connected with each other through system buses. Rather than showing
buses as thick lines going through the screen, which would be very awkward, the
buses will not be shown at all. Instead, every window will have a “connector” – a set

CLab – Design – The Real Program – Interface

 51

of three circles labelled “AB”, “DB” and “CB” for Address Bus, Data Bus and
Control Bus respectively. It will be implied that all AB circles are connected with
each other, and so will be DB and CB circles. Every time data is sent across a bus
from one device to another, that data will be shown as a tiny window with the data
printed in it flying from the sender connector to the connector on the Buses window
and then to all destinations it may go to. The data will skip the Buses window if it is
closed (it will fly straight to the destination(s)).

 Fig.9.8. Buses window

The left part of the window is the “connector”. The right part will display the same
text as that in the flying windows. Changing the numerical representation will also
affect the representation for the flying windows. The text in this window will not be
updated to the new value put by a device until a respective window “lands” on this
window’s connector.

11.9. CPU window
The CPU window will show internal structure of the CPU and what happens when it
executes a program. The window will show the components the CPU consists of and
the values of all registers. Fig.9.9 below shows a possible layout of the form.

Buffer

MDR
Data bus

Buffer
MAR

Address bus

Registers

B

C

D

E

SP

IP

Addressing

ALU

ACC FLAGS

Buffer
Control bus

Control Unit

LEA

CIR:

Cycle:
Rem:

BA 00

Fetch
1

IS: FEDC BA98

7654 3210

0021h

0C04h

0000h

0000h

0008h

0024h

0065h Z:0 I:1
S:1
O:0 N:1
C:1 P:0

F712h

2C80h

Internal Address Bus

Internal Data Bus

+1/2

0000 0000

0000 0010

Disassembled: test a, ??

 Fig.9.9. CPU window

 System buses

AB 89F5h
DB 0000h
CB Memory write

 CPU

CLab – Design – The Real Program – Interface

 52

The purpose of all components that will be shown is described in detail in section
CPU.Architecture. It will also be described in user manual.

There are a lot of different buses in the diagram. Some of them are major buses such
as the Internal Data and Address Buses, some are minor and have no special name. In
any case, the data flowing through them will have to be shown somehow. The most
visual way to do that is to show tiny windows with data flowing along the buses, very
similar to the way described in section Interface.Buses.

The contents of all registers, including the internal registers and the decoded contents
of the FLAGS register, will be displayed in the diagram to make it easier to see how the
CPU operates. Whenever a register’s value changes, it will be displayed in red for one
clock cycle. Whenever the Control Unit chooses a register for a read/write operation,
that register will be displayed in a thick blue frame.

The top right part of the window will display a “connector”, as described in
Interface.Buses. In this diagram, more than anywhere else, the user will be able to see
how data that goes through connectors is used.

There are a lot of components in the diagram, and if the user sees the diagram of the
inside of the CPU for the first time, they will be repelled by its apparent complexity. It
is therefore absolutely vital that it is possible to choose which components are to be
displayed. By default the simplest view will be selected. The three available views
will be as follows:

Basic view:
SP and ±1/2 will be invisible
LEA with arrows leading to it will be invisible
Base register going to addressing will be invisible
Insides of the Control Unit will be invisible
Flags register will be invisible
MDR and MAR registers will be invisible

A-level view:
LEA with arrows leading to it will be invisible
Base register going to addressing will be invisible

Full view:
Everything will be visible

Independent of whether a specific component is turned on or off, the data flow will
remain unaffected (with one exception – signals controlling invisible devices will also
be invisible). The user will be aware that there is something in the white space where
the data comes from, but they will not be able to see that component until they decide
they are more familiar with the CPU structure.

If the user right-clicks in the window, a following popup menu will appear:

• Detail level
o Basic

CLab – Design – The Real Program – Interface

 53

o A-level
o Full

• Number representation
o Decimal signed
o Decimal unsigned
o Hexadecimal

• Open registers
• Open flags
• Open control unit
• Open ALU

11.10. Control Unit window
This window will display the status of the control unit to give an interested student a
slight idea of how it works. Showing decoded instruction will not be a complicated
programming task as the system will have to decode instructions into
microinstructions anyway in order to show signals flowing around the CPU.

 Fig.9.10. Control Unit window

At the top of the window the system will show some internal registers, such as the
Current Instruction Register (CIR), and how many fetch or execute cycles are left in
the current instruction. It will also show the disassembled instruction to make it easier
for the user to understand what the control unit is doing. The Decoded part will show
a decoded microprogram for current instruction. It will contain one or more
microinstructions, consisting of one or more signals for internal control bus.

There will be no complexity level setting for the control unit window. In the Basic
mode the user will not be able to open this window at all, whereas in the A-level
mode the user will be warned that CPU windows contains all the required
information, and Control Unit window is more advanced than required at A-level.

11.11. ALU window
The Arithmetic Logic Unit (ALU) window will teach students how the ALU works by
showing what it does, and in some cases animating the operations. Right-clicking in
the window will bring up a menu with an option to change number representation. If
an animation for the operation is available, the user will be able to run it from the
menu.

 Control Unit

Cycle: Execute Interrupt Status:
To fetch: 0 FEDCBA98 76543210
To exec: 1 00000000 00000000

CIR: 23 10 00 Disasm: ld e,16

Decoded:
reg_se, idb_im(0010h), reg_w

CLab – Design – The Real Program – Interface

 54

 Fig.9.11. ALU window

11.12. Video controller
The video controller window will show details about video controller’s state, as well
as give user some reminder regarding how to work with the controller. This should
help the user understand how devices in general and the video controller in particular
work.

 Fig.9.12. Video controller window

As usual for controller windows, this window will have a bus “connector” on it (see
section (Interface. Buses)). To the right of the “connector” the window will display
the status of its ports. The bottom part will decode current screen mode. To remind the
user what each of the ports does, a hint will pop up every time the user hovers over a
port number. Port 50h hint will also display a list of all screen modes.

11.13. Keyboard controller window
The keyboard controller window will show the user current keyboard controller
status. This should help the user understand how devices in general and the keyboard
controller in particular work.

 Fig.9.13. Keyboard controller window

 ALU
Input 1 (Accumulator): 208Ah
Input 2 (Data Bus): 0003h
Operation: multiply
Operand(s): inp1, inp2
Result: 619Eh

 Video controller

Video controller Ports 50h-54h

AB 50h: Mode 01h
DB 51h: Ready
CB 52h: Offset E000h
 53h: Ready
 54h: Auto refresh

Mode: 01h Type: Text
Res: 40x15 Colour: B/W

 Keyboard controller

Keyboard controller
Port 60h, IRQ 1

AB Pending key: “I”
DB Last key: “L”
CB IRQ: pending

CLab – Design – The Real Program – Interface

 55

The window will contain the system buses “connectors” (see section (Interface.
Buses)) as well as status information. The window will tell the user whether interrupt
request for last key pressed has been accepted and whether the last key has been sent
to the program.

11.14. Speaker controller window
The speaker window will be a small window showing current state of the system
speaker and its controller. This window will be the simplest of all device controller
windows, and so may be used as a good aid in introducing such concepts as external
devices and I/O ports.

 Fig.9.14. Speaker controller window

Speaker state (high or low) will be indicated in a field at the bottom on the window.
Also, when speaker is high the picture of the speaker will become red. This way, a
buzzing speaker will be blinking rapidly. Right-clicking anywhere in the window will
bring up a menu with two options – switch to high state and switch to low state. The
AB, DB and CB labels are “connectors” for the respective system buses (see section
(Interface.Buses)).

11.15. Code window
The user will usually write and debug programs in the code window. Using this
window the user will be able to load and save their programs on disk, compile them
into machine codes, load them into memory and run them, and debug them.

 Fig.9.15.1. Code window

 Speaker

Speaker controller (port 80h)

AB
DB
CB

State: low (0)

 Code – multiply.asm *
 File Edit Run Tools Settings Help

 ; A multiply program demo
 .model flat
 .stack downward

 ld A,0 ;A holds current result
 ld B,M1 ;B holds one multiplier
 ld C,M2 ;C holds the other multiplier
 loop: test C,1 ;Test the low-order bit
 jz skip ;Add only if bit is set
 add A,B ;Update current result
 lshr C,1 ;User next bit in one multiplier
 lshl B,1 ;Increase the other multiplier
 Error (8): Illegal combination of opcode/operand: “test” and “C”
 Modified Line 3 Insert

CLab – Design – The Real Program – Interface

 56

The main part of the window will be the code editor. To the left of it will be the so-
called “gutter”, where different types of markers will be displayed (e.g. error,
breakpoint, current execution point). The bottom part of the window will display
messages, such as error and warning messages, generated by syntax check or the
compiler. Double-clicking on a message will show the offending line. In the bottom
right corner the user will be able to see file status (modified/saved), current line in the
editor and the editing mode (insert/overwrite). The code window will support syntax
highlighting, which will greatly assist writing programs.

The integrated help system will show the user help on current instruction in the editor
if the user presses F1. If the user selects an error/warning message and presses F1, the
system will display a relevant help topic. Full help will be available through the
window menu.

There will be a menu at the top of the screen, which will have the structure displayed
in fig. 9.15.2.

 Fig.9.15.2. Menu structure for Code window

11.16. Registers subwindow
This window will show all the registers that there are in the CPU. The user will be
able to choose whether to show segment and internal registers. The user will also be
able to change number representation for the registers.

 File
 New program
 Open program
 Save program
 Save as…
 Open workspace
 Save workspace

 Edit

 Cut
 Copy
 Paste
 Replace
 Find
 Find next

 Run

 Syntax check
 Compile
 Run
 Pause
 Stop
 Step
 Toggle breakpoint

 Tools
 Trace table
 Interface

 Computer
 Monitor
 Keyboard
 Speaker

 Hardware

 Speaker
 Keyboard controller
 Video controller
 System buses
 RAM
 CPU
 Control Unit
 ALU

 OS/Debug

 Stack
 Variables
 Disassembler
 Registers
 Flags

 Help
 Full help
 Keyword

CLab – Design – The Real Program – Interface

 57

 Fig.9.16.1. Registers window – horizontal layout

 Fig.9.16.2. Registers window
 Compact layout

 Fig.9.16.3. Registers window
 Vertical layout

Right-clicking in the registers window will bring up a popup menu which will allow
to change layout and number representation. If the user right-clicks on a register, the
menu will also allow to change its value. Only registers A-F registers can be edited in
this way.

11.17. Variables subwindow
The variables window will display the variables declared in the source code. It will
show variable address, variable name and its value. The user will be able to choose
number representation and variable size.

11.18. Stack subwindow
The stack window will display stack contents, decoded into separate stack elements
(unlike in the RAM window where everything is just an array of bytes). The user will
see element addresses and data stored in those elements. The user will be able to
choose different number representation. The element to which SP points at a given
moment will be highlighted with aqua background.

 Fig.9.17. Variables window Fig.9.18. Stack window

RAM – stack (word hex)

 Stack element
206 38Efh
208 7F89h
20A 0052h
20C 8620h
20E 0000h

 Var-s (signed word dec)

Adr Name Value
028 m1 0020h
030 m2 0846h
04A product 000Ah

 CPU – reg

A
F

B
C
D
E

MDR
MAR

CIR
F/E

IS

 CPU – registers

A B D MDR CIR
F C E MAR F/E IS

CPU – registers

A CIR IS
F F/E

B C MDR
D E MAR

CLab – Design – The Real Program – Modules

 58

12. Modules
This section describes the modules of which the program will consist. A module is a
logically and physically separate unit of a program which either contains a set of
specific operations (a procedural module) or code related to window interface (a form
module).

12.1. Form modules

Interface windows

• fiMain – Main window
• fiComp – Computer window
• fiDisplay – Display window
• fiKeyboard – Keyboard window
• fiSpeaker – Speaker window

Hardware windows
• fhCPU – CPU window
• fhCU – Control Unit window
• fhALU – ALU window
• fhRAM – RAM window
• fhBus – Buses window
• fhVideo – Video controller window
• fhKeyboard – Keyboard controller window
• fhSpeaker – Speaker controller window

OS/Debug windows
• fsCode – Code window
• fsRegs – Registers window
• fsVars – Variables window
• fsStack – Stack window

12.2. Procedural modules

• pWinAPI – all necessary declarations to use WinAPI functions
• pUtils – commonly used procedures not available in standard libraries
• pGlobals – global variable and data type declarations
• pExec – procedures that are responsible for execution of an instruction
• pCompile – assemble a program, syntax check, plus assemble/disassemble a

given string procedures
• pIO – input/output procedures to simplify interfacing with device modules,

providing such functions as PortRead, PortWrite, RequestInterrupt etc.

CLab – Design – The Real Program – Structures and globals

 59

13. Data structures and globals

It is very hard to think about data structures in advance because they will be severely
affected by exact implementation of algorithms. At this stage many points are not
clear enough yet, and will only be decided upon in the process of implementation.
What makes laying down data structures even harder is that I am not familiar with
Visual Basic, and I have never coded anything more advanced than a simple single-
windowed program in it. I could use my experience in Delphi programming to
compile a list of all global data structures that I would expect, but most probably they
will not be entirely applicable to Visual Basic. I am planning to develop data
structures while learning about VB coding principles during implementation stage.

I would expect to declare all global variables and structures in a module called
pGlobals. I would have a structured variable to hold all information about current
project, another one – to hold execution (simulation) state, and probably one for
application-related variables.

CLab – Design – The Real Program – Assembly process

 60

14. Assembly process
When an assembly language program is compiled into machine code, a specific
algorithm is at work. This section describes how the algorithm will work.

14.1. Conventions and terms

Tokens
A token is the smallest unit of program that is meaningful to the compiler. In this
assembler, a token will be a string containing no spaces after pass 1 (see below).
Therefore, a token can be:

• Label
• Variable declaration type
• Variable initialisation sequence
• Opcode
• Operand

Note that an operand token can not be divided any further. That is, even a complete
indexed memory addressing will be parsed into a single token.

14.2. Passes overview
To assemble a program the algorithm works through it several times; each time is
called a pass. To fully compile a program, three passes are required.

Pass 1. Tokenize
At this stage the source code is converted into a set of tokens which, unlike such
languages as C and Pascal, will still be separated into lines. Internally a tokenized
program will be stored as an array of token lines, each being an array of strings
containing one token each.

Pass 2. Code generation
Each token line is converted into respective machine codes which are added up and
saved in a special byte array. Where a reference is used, the program will remember
reference name and backpatch its address in pass 3.

Pass 3. Backpatching
All references are replaced by physical addresses.

14.3. Pass 1. Tokenize
This is a relatively simple pass. The following procedures are carried out on every line
of code:

• Remove all comments, unnecessary spaces and empty lines
• Split every line into tokens
• Determine token types

CLab – Design – The Real Program – Assembly process

 61

• Analyse token patterns (see Token Patterns)
• Prepare references for pass 2.

14.4. Pass 2. Code generation
At this stage machine codes can be generated. The algorithm will go through all token
lines and generate respective machine codes. The following procedures will be carried
out:

Generate code for correct instructions
Issue errors for incorrect instructions
Build a list of labels with their physical addresses
Build a list of reference backpatch requests.

14.5. Token patterns
Only specific combinations of tokens will be valid. To simplify referring to token
types, the following abbreviations will be used:

• Label label
• Variable declaration type vardecl
• Variable initialisation sequence varinit
• Opcode opcode
• Operand operand

Allowed token patterns

label
opcode
opcode operand
opcode operand operand
vardecl varinit

Patterns that can be corrected
If a pattern contains label tokens that follow some non-label tokens then a warning is
issued and the label tokens are moved to the beginning of the line.

If a pattern contains a label token (or several label tokens) then the token line is split
into two or more token lines, with a token line for every label and the last token line
being what remains of the original token line. If it has no other tokens, it is removed
completely. This procedure generates no warnings.

If a pattern contains only a vardecl token then a varinit token with no initialization
will be added, generating a warning.

All other patterns will generate an error. The error message will say that a specific
token combination is invalid.

CLab – Design – The Real Program – Execution process

 62

15. Execution process

This section describes the algorithm that executes a program. The algorithm will
effectively simulate a clock tick. Below is a flowchart for the algorithm.

Begin

Fetching mode? NoYes

Decode instruction

Execute next microinstruction

Check if interrupts
pending. Invoke
ISP if necessary.

Fetch next byte

Fetched the last
byte?

Yes

No

End

Switch to execution

Executed the last
microinstruction?

No

Switch to fetching

Empty CIR etc.

Yes

 Fig.14.1. Execute instruction algorithm

To invoke an interrupt the system will create a microprogram which will load ISP
address from the interrupt vector table, save flags and return address on stack and
jump to ISP address. As soon as the microprogram is in the buffer, all that will
necessary is just to continue running the clock tick procedure.

CLab – Design – The Real Program – Sample scenario

 63

16. Sample scenario

The purpose of this section is to analyse whether design is acceptable by going
through all stages of development of a simple assembly language program in an A-
level computing lesson, and thus clearly showing what this project is going to be like.

Suppose that the goal of the lesson is to write a program which will add the values of
two variables, V1 and V2 and store the result in a third variable, R. Each student is
issued with a copy of user manual for A-level students. The teacher has already taught
students some theory about assembly language before, so students have a general idea
of what they will be doing.

The students start the system. By default they are in GCSE mode. The teacher tells
students to switch to A-level mode. At the top of the screen each student sees a
window with a menu and many buttons. The teacher tells them to click on the one
saying, “Write a program”. A window with a text editor appears. Students can start to
code. Let’s concentrate on one student, named James.

James knows that there is a special instruction “add” that will instruct the computer to
add two numbers. James also knows that normally the result of this operation will be
stored in the accumulator. So James types:

 add V1, V2
 st a, R

When James clicks “Run”, he gets an error message, with the first line highlighted in
red, saying “Syntax error in operand OR opcode and operand incompatible.
Offending operand: V1”. James has no idea what this means, so he asks the teacher.
The teacher notices that many people have the same problem and reminds everybody
that one can only add together two registers or a register and a variable, but not two
variables. So the values of the variables should be loaded into registers first. James
remembers that this can be done with the “ld” instruction. So he modifies his code
and gets the following:

 ld b, V1
 ld c, V2
 add b, c
 st a, R

James reasons that he should not load anything into the accumulator because the result
will be stored there. So he loads the variables into two other registers. When he tries
to run this code, he sees that the third line is highlighted, and he gets a similar error
message: “Syntax error in operand OR opcode and operand incompatible. Offending
operand: c”. James seeks for some help from the teacher, but teacher is busy helping
someone else and tells James to consult the manual regarding the ADD instruction
and the error message James is getting. James reads the description of the ADD
instruction, which, among other things, mentions that if one tries to add two operands
apart from those that are allowed they will get exactly this error message. So James
realises that again, he is trying to add something he is not allowed to add. He notices
in an example that two registers will generate an error unless one of them is the

CLab – Design – The Real Program – Sample scenario

 64

accumulator. James decides that he could load V2 into accumulator. He modifies his
code accordingly:

 ld b, V1
 ld a, V2
 add b, a
 st a, R

When James tries to run this program, he gets an error message – for the third time.
The message is pointing at the first line and saying, “Undeclared reference: V1”. He
gets quite annoyed, but soon remembers that he has to declare the variables V1 and V2
in his code. So he adds to the end of the code:

V1: dw 14
V2: dw 8
R: dw 0

This time the program actually runs. James can see the instruction pointer slowly
moving down. But when it reaches the end of the program, it doesn’t stop but tries to
execute variable declaration, generating an error message saying “Failed to decode
instruction starting with 0Eh”. James asks the teacher how to make the program stop.
The teacher tells him to put a “halt” instruction where he wants the program to end.
James updates the program, which by now looks like this:

 ld b, V1
 ld a, V2
 add b, a
 st a, R
 halt

V1: dw 14
V2: dw 8
R: dw 0

The program runs successfully and ends by displaying a message, “CPU halted”.
James now wants to see the results of his work. So he clicks on a button in the main
window saying, “Variables”. He sees that V1 contains 14 and V2 contains 8, just as
they should, but R contains 8 instead of 22 as expected. He asks the teacher what to
do. The teacher advices James to open the “Registers” window and carefully go
through every line of code by pressing F8 and looking at what happens. James does
so. He sees that after the first two instructions the registers contain what they should.
But after he executes the third instruction he notices that contents of register b
changes to red (indicating that value changed), and it is indeed the sum of two
numbers. James realises that result goes into b and not the accumulator for some
reason, so he changes the fourth instruction to store register b in R. James runs the
program again and sees that this time everything works perfectly.

CLab – Design – The Real Program – Security and integrity

 65

17. File formats

There will be only one file type – assembly language program. The file will have no
special format – it will simply store all the code that the user writes in text form, “as
is”. Among the advantages of this approach are the facts that it will be very simple to
implement, and the users will be able to edit their code without having CLab.

18. Security and integrity

This system will store no sensitive data and therefore will require no security
measures to be taken.

All data that may suffer loss or corruption is programs saved on disk or the program
under development. It is not crucial to make sure that programs that are loaded from
disk are error-free, but if any time is available then an integrity check such as a
checksum may be implemented. To maintain integrity of the program under
development error traps should be used in implementation so that even if something
goes wrong the user will still be able to save their work on disk.

CLab – Design – The Real Program – Design confirmation

 66

19. Design confirmation

Having completed the design of the system, it should be confirmed with the user(s)
the system is developed for. I have discussed this design section in detail with my
end-user, and below is a list of all modifications that should be made.

• Disassembler window and disassembled instructions in Control Unit, although
useful, will not be worth the implementation time necessary to have them

• The user should be able to edit all register values in the Registers and CPU
window, as well as variables in the Variables window. Editing stack will not
be crucial but could be useful if it won’t be too time-consuming to implement
it.

• Microprogram in the Control Unit window should be hidden in A-level mode,
and only showed in the Full mode. The warning about complexity of the
window should not be shown.

• The user should be able to turn off the “flying data windows” if they are not
necessary.

• The Buses window should be extended to show an overview of the system
unit, showing the CPU, RAM, buses and the three controllers – video,
keyboard and speaker – and show the “flying windows” to display data flow
between them.

• All animated examples should be available through a menu on the Main
window. It should be possible to run them without having anything to do with
the rest of the system. Apart from ALU operation animations already
mentioned, the following animations should be added provided there is enough
time to develop them:

o Differences between different addressing modes
o Arrays uses, especially in loops
o Sorting algorithms
o Binary trees explained, binary trees and searching.

• Window captions should not contain any detailed information
• Each window should have a What’s This button in the caption, and a short

note should popup describing any window element should the user use this
button.

• RAM window: It is not necessary to show what the instruction would be if PC
was to point at the selected cell; rather, the bytes being executed should be
highlighted in some way. Also, all the code generated by the compiler should
be highlighted. Interrupt vector table should be highlighted with a special
color. Stack values should be highlighted. All non-empty memory cells should
be highlighted. All other memory cells should be dimmed. Block operations
such as copy/paste are not required.

• Whenever the user is not running a program, all debug windows should clearly
indicate that so that the user does not accidentally try to use them.

CLab – Design – The Real Program – Design confirmation

 67

20. Testing strategy

Fully testing a system as big as this is extremely time-consuming. Therefore having a
testing strategy is vital.

In this document, I will only discuss alpha testing. Beta testing takes a lot of time and
requires many people to use the program for a while. Unfortunately, no time is
available for beta testing. Note that I will let my end-user use the system and get some
feedback from him – that will be discussed in Appraisal.

Alpha testing will be mostly black box testing. I have two reasons for choosing black
box as opposed to white box testing. One is that preparing for white box testing is a
lot more time consuming. The other is that I tested the procedures while implementing
them, trying out every possibility, so doing white box testing again may not be very
efficient.

Alpha testing will be split into the following parts:

• Testing assembly language – this will involve writing different instructions
with different opcodes etc. and making sure they are executed correctly.

• Testing windows – this will be going through all windows and make sure they
function the way they are supposed to.

• Overall testing – this will involve developing several programs entirely in
CLab. The purpose of this is to make sure it is in fact possible to develop a
program in CLab (which neither of the previous two tests can prove).

Implementation

CLab – Implementation Plan

 69

21. Plan
Developing a system of this complexity is a serious and time consuming task. To
minimise time losses in case something goes wrong the system will be developed
incrementally, in steps, so that at the end of each step the system can be run to see the
results. An alternative way of developing it would be to write everything from the
beginning to the end and only then run it for the first time. The advantage of the latter
approach is that no time is spent on making an intermediary state work, but the
disadvantage is that in case of a major design flaw a lot of code will have to be
changed.

The outline of the implementation process is laid down below.

• Main form with stubs on most events; most frequent procedures in pUtils and
pWinAPI; main types and variables in pGlobals.

• RAM window with basic functionality; pSynHigh unit with the required
procedures doing everything in a single color

• CPU window with basic functionality; pExec executing simple instructions, do
not show any data flow yet.

• pExec executes most instructions (except those that need anything not yet
implemented)

• Code window with open/save facilities; program compilation
• Implement hardware windows; hardware interacts with code
• Interface windows
• OS/Debug windows
• Finish syntax highlighting etc.
• Any extra facilities if time left, such as a primitive Basic to assembly compiler

Note that at every stage some extra functionality may be implemented (this is
especially true of pWinAPI, pUtils and pGlobals); the further the plans go the harder
it becomes to predict precisely what will seem reasonable to develop next. This is why
the further into the implementation the more general the points become.

At this point the actual coding begins; the next section will list the code after
everything will have been written.

CLab – Implementation Listings

 70

22. Listings

22.1. pGlobals

Option Explicit

'---------------------'
'--- SUBSTRUCTURES ---'
'---------------------'

'Video system state structure
Public Type TpVideo
 Mode As Integer 'Mode number character
 autoUpdate As Boolean 'Whether screens are refreshed automatically

 mdResX As Integer 'number of characters/pixels horizontally
 mdResY As Integer 'number of characters/pixels vertically
 mdType As Integer '0=text, 1=graphics direct, 2=graphics
paletted
 mdColors As Integer '0=monochrome, 1=16, 2=256, 3=65536,
4=16777216
 mdFntX As Integer 'one char width in screen pixels
 mdFntY As Integer 'one char height in screen pixels

 MemOff As Long 'Offset to video memory in RAM
 PalMem(0 To 255) As Long 'Video controller palette memory
 vDC As VirtualDC 'Virtual DC - bitmap
End Type

'-----------'
'--- APP ---'
'-----------'
Private Type TApp
 'Is set to true while unloading forms when app shuts down
 Terminating As Boolean
 'Previous window procedure pointer for fiMain
 PrevWndProc As Long

 'OS version
 RunningOnWinXP As Boolean
End Type
Public Appp As TApp

'------------'
'--- PROJ ---'
'------------'
Private Type TProj
 Modified As Boolean 'Variable for confirm queries

 '--- Global settings ---'
 Complexity As Integer '0-basic, 1-alvl, 2-full
 NmbRep As Integer '0hex 1bin 2decU 3decS

 '--- Program ---'
 P As TpPrg

 '--- Execution ---'
 Running As Boolean
 Paused As Boolean
 Halted As Boolean
 TickCount As Long
 CPU As TpCPU 'fhCPU, fhCU, fhALU
 RAM() As Byte 'fhRAM
 Video As TpVideo 'fhVideo
End Type
Public Proj As TProj

'--'
' Sub Main() '
' '
' DESCRIPTION: Defines application entry point '
' '
' NOTES: all this is rather unusual and '
' unnatural in VB but it gives me much more '
' control and it seems to work fine. '
'--'
Sub Main()
 'We have started
 Appp.Terminating = False
 'XP controls if running on XP, no harm otherwise
 InitCommonControls

 'Get OS version
 Dim osver As OSVERSIONINFO
 osver.dwOSVersionInfoSize = 148 'according to Delphi's SizeOf.
Jesus, Microsoft, what would I do without Delphi? Buy VC?
 Call GetVersionEx(osver)
 If (osver.dwMajorVersion > 4) And (osver.dwMinorVersion > 0) Then
Appp.RunningOnWinXP = True Else Appp.RunningOnWinXP = False

 'Display startup form
 fiSplash.Show
 fiSplash.Refresh

 'Load all forms but keep them invisible
 fdKeyboard.Hide
 fdSpeaker.Hide
 fdVideo.Hide
 fhCPU.Hide
 fhCU.Hide
 fhRAM.Hide
 fiComp.Hide
 fiDisplay.Hide
 fiKeyboard.Hide
 fiMain.Hide
 fsCode.Hide
 fsRegs.Hide
 fsStack.Hide
 fsVars.Hide

 'Initialise Proj
 Proj.Modified = False
 Proj.Complexity = 0
 Proj.NmbRep = 0
 Proj.Running = False
 Proj.Paused = False
 'Initialize Proj.P
 ReDim Proj.P.Ref(-1 To -1)
 ReDim Proj.P.TknLine(-1 To -1)
 ReDim Proj.P.Backpatch(-1 To -1)
 ReDim Proj.P.ErrL.lError(-1 To -1)
 ReDim Proj.P.ErrL.lWarning(-1 To -1)
 ReDim Proj.P.ErrL.nError(-1 To -1)
 ReDim Proj.P.ErrL.nWarning(-1 To -1)
 ReDim Proj.P.ErrL.sError(-1 To -1)
 ReDim Proj.P.ErrL.sWarning(-1 To -1)
 ReDim Proj.P.Code_O2L(-1 To -1)
 ReDim Proj.P.Code_L2O(-1 To -1)
 ReDim Proj.P.Vars(-1 To -1)
 Proj.P.Code = ""
 Proj.P.CompileNeeded = True
 'Set complexity
 fhCPU.SetComplexity

 'Initialize p* modules
 Call pCompile.cmpInit
 Call pExec.exeInit
 'Initialise hardware modules
 Call fhCPU.Reset
 Call fhCU.Init
 Call fhRAM.Init
 'Initialise devices
 Call devInit
 'Initialize fs* and fi* modules
 Call fsRegs.Init
 Call fiMain.Init
 Call fsCode.Init
 Call fsStack.Init
 Call fsVars.Init

 'Show main window
 fiMain.Show
 'Show computer
 fiComp.Show
 'Destroy splash form
 Unload fiSplash

 ' This is the end of the Main procedure, but '
 ' the application will keep running until '

CLab – Implementation Listings

 71

 ' all forms have been unloaded. '
 ' Note that when the user presses Close button '
 ' in forms' system menu the form is *hidden*, '
 ' not actually closed and unloaded. The only '
 ' way to shutdown the application is to close '
 ' the fiMain window, which will unload all forms. '
End Sub

'--'
' Function WindowProc(ByVal hw As Long, '
' ByVal uMsg As Long, ByVal wParam As Long, '
' ByVal lParam As Long) As Long '
' '
' DESCRIPTION: Window procedure for fiMain '

' '
' NOTES: '
' I wish someone knew how much I hate VB. This is '
' one of hundreds of other things which cause it. '
' VB does not allow to use AddressOf on any procs '
' which are declared in a Form module, so even a '
' function so closely related to the form (much '
' closer than ANY other function) cannot be in the '
' same module. It is very clumsy having it here. '
'--'
Function WindowProc(ByVal hw As Long, ByVal uMsg As Long, ByVal
wParam As Long, ByVal lParam As Long) As Long
 WindowProc = fiMain.WindowProc(hw, uMsg, wParam, lParam)
End Function

22.2. pWinAPI

Option Explicit

'-----------'
'--- GDI ---'
'-----------'

'--- Text ---'
Public Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long,
ByVal hObject As Long) As Long
Public Declare Function DeleteObject Lib "gdi32" (ByVal hObject As
Long) As Long
Public Declare Function GetStockObject Lib "gdi32" (ByVal nIndex As
Long) As Long
Public Declare Function SetBkMode Lib "gdi32" (ByVal hdc As Long,
ByVal nBkMode As Long) As Long
Public Declare Function SetTextColor Lib "gdi32" (ByVal hdc As Long,
ByVal crColor As Long) As Long
Public Declare Function CreateFont Lib "gdi32" Alias "CreateFontA"
(ByVal h As Long, ByVal W As Long, ByVal E As Long, ByVal o As Long,
ByVal W As Long, ByVal i As Long, ByVal u As Long, ByVal s As Long,
ByVal c As Long, ByVal OP As Long, ByVal CP As Long, ByVal Q As Long,
ByVal PAF As Long, ByVal f As String) As Long
Public Declare Function CreateBrushIndirect Lib "gdi32" (lpLogBrush
As LOGBRUSH) As Long
Public Type LOGBRUSH
 lbStyle As Long
 lbColor As Long
 lbHatch As Long
End Type
Public Declare Function GetTextExtentPoint32 Lib "gdi32" Alias
"GetTextExtentPoint32A" (ByVal hdc As Long, ByVal lpsz As String,
ByVal cbString As Long, lpSize As Size) As Long
Public Declare Function TextOut Lib "gdi32" Alias "TextOutA" (ByVal
hdc As Long, ByVal x As Long, ByVal y As Long, ByVal lpString As
String, ByVal nCount As Long) As Long
Public Declare Function DrawText Lib "user32" Alias "DrawTextA"
(ByVal hdc As Long, ByVal lpStr As String, ByVal nCount As Long,
lpRect As RECT, ByVal wFormat As Long) As Long

'--- Pictures ---'
Public Declare Function BitBlt Lib "gdi32" (ByVal hDestDC As Long,
ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal nHeight
As Long, ByVal hSrcDC As Long, ByVal XSrc As Long, ByVal YSrc As
Long, ByVal dwRop As Long) As Long
Public Declare Function StretchBlt Lib "gdi32" (ByVal hdc As Long,
ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, ByVal nHeight
As Long, ByVal hSrcDC As Long, ByVal XSrc As Long, ByVal YSrc As
Long, ByVal nSrcWidth As Long, ByVal nSrcHeight As Long, ByVal dwRop
As Long) As Long
Public Declare Function MoveToEx Lib "gdi32" (ByVal hdc As Long,
ByVal x As Long, ByVal y As Long, lpPoint As POINTAPI) As Long
Public Declare Function LineTo Lib "gdi32" (ByVal hdc As Long, ByVal
x As Long, ByVal y As Long) As Long
Public Declare Function Rectangle Lib "gdi32" (ByVal hdc As Long,
ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As
Long) As Long
Public Declare Function SetPixelV Lib "gdi32" (ByVal hdc As Long,
ByVal x As Long, ByVal y As Long, ByVal crColor As Long) As Long

Public Declare Function InvalidateRect Lib "user32" (ByVal hwnd As
Long, lpRect As RECT, ByVal bErase As Long) As Long
Public Declare Function GetClientRect Lib "user32" (ByVal hwnd As
Long, lpRect As RECT) As Long
Public Const TRANSPARENT = 1
Public Type POINTAPI

 x As Long
 y As Long
End Type
Public Const SRCCOPY = &HCC0020
Public Type Size
 cx As Long
 cy As Long
End Type

'---------------'
' System colors '
'---------------'
Public Declare Function GetSysColor Lib "user32" (ByVal nIndex As
Long) As Long
Public Const COLOR_ACTIVEBORDER = 10
Public Const COLOR_ACTIVECAPTION = 2
Public Const COLOR_APPWORKSPACE = 12
Public Const COLOR_BACKGROUND = 1
Public Const COLOR_BTNFACE = 15
Public Const COLOR_BTNHIGHLIGHT = 20
Public Const COLOR_ADJ_MAX = 100
Public Const COLOR_ADJ_MIN = -100
Public Const COLOR_BTNSHADOW = 16
Public Const COLOR_BTNTEXT = 18
Public Const COLOR_CAPTIONTEXT = 9
Public Const COLOR_GRAYTEXT = 17
Public Const COLOR_HIGHLIGHT = 13
Public Const COLOR_HIGHLIGHTTEXT = 14
Public Const COLOR_INACTIVEBORDER = 11
Public Const COLOR_INACTIVECAPTION = 3
Public Const COLOR_INACTIVECAPTIONTEXT = 19
Public Const COLOR_MENU = 4
Public Const COLOR_MENUTEXT = 7
Public Const COLOR_SCROLLBAR = 0
Public Const COLOR_WINDOW = 5
Public Const COLOR_WINDOWFRAME = 6
Public Const COLOR_WINDOWTEXT = 8

'-------------------------------'
' Window procedures & messaging '
'-------------------------------'
Public Declare Function CallWindowProc Lib "user32" Alias
"CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal hwnd As
Long, ByVal Msg As Long, ByVal wParam As Long, ByVal lParam As
Long) As Long
Public Declare Function SetWindowLong Lib "user32" Alias
"SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As Long, ByVal
dwNewLong As Long) As Long
Public Declare Function DefWindowProc Lib "user32" Alias
"DefWindowProcA" (ByVal hwnd As Long, ByVal wMsg As Long, ByVal
wParam As Long, ByVal lParam As Long) As Long

Public Const GWL_WNDPROC = -4

Public Const WM_SYSCOMMAND = &H112
Public Const SC_MINIMIZE = &HF020&
Public Const SC_RESTORE = &HF120&
Public Const WM_NCLBUTTONDOWN = &HA1
Public Const HTCAPTION = 2
Public Const WM_SIZING = 532
Public Const WM_SIZE = &H5
Public Type RECT
 Left As Long
 Top As Long
 Right As Long

CLab – Implementation Listings

 72

 Bottom As Long
End Type
Public Declare Function LockWindowUpdate Lib "user32" (ByVal hwndLock
As Long) As Long
Public Declare Function InitCommonControls Lib "comctl32" () As Long

'----------------------'
'--- COMMON DIALOGS ---'
'----------------------'
Public Declare Function GetOpenFileName Lib "comdlg32.dll" Alias
"GetOpenFileNameA" (pOpenfilename As OPENFILENAME) As Long
Public Declare Function GetSaveFileName Lib "comdlg32.dll" Alias
"GetSaveFileNameA" (pOpenfilename As OPENFILENAME) As Long
Public Declare Function ChooseColor Lib "comdlg32.dll" Alias
"ChooseColorA" (pChoosecolor As TCHOOSECOLOR) As Long
Public Declare Function CommDlgExtendedError Lib "comdlg32.dll" () As
Long
Public Type OPENFILENAME
 lStructSize As Long
 hwndOwner As Long
 hInstance As Long
 lpstrFilter As String
 lpstrCustomFilter As String
 nMaxCustFilter As Long
 nFilterIndex As Long
 lpstrFile As String
 nMaxFile As Long
 lpstrFileTitle As String
 nMaxFileTitle As Long
 lpstrInitialDir As String
 lpstrTitle As String
 FLAGS As Long
 nFileOffset As Integer
 nFileExtension As Integer
 lpstrDefExt As String
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String

End Type
Public Type TCHOOSECOLOR
 lStructSize As Long
 hwndOwner As Long
 hInstance As Long
 rgbResult As Long
 lpCustColors As Long
 FLAGS As Long
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String
End Type
Public Const OFN_PATHMUSTEXIST = &H800
Public Const OFN_FILEMUSTEXIST = &H1000
Public Const OFN_OVERWRITEPROMPT = &H2
Public Const WM_INITDIALOG = &H110

'------------------'
'--- OS Version ---'
'------------------'

Public Declare Function GetVersionEx Lib "kernel32" Alias
"GetVersionExA" (lpVersionInformation As OSVERSIONINFO) As Long
Public Type OSVERSIONINFO
 dwOSVersionInfoSize As Long
 dwMajorVersion As Long
 dwMinorVersion As Long
 dwBuildNumber As Long
 dwPlatformId As Long
 szCSDVersion As String * 128 ' Maintenance string
for PSS usage
End Type

'------------'
'--- Misc ---'
'------------'
Public Declare Function GetTickCount Lib "kernel32" () As Long

22.3. pUtils

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Errr '
' Tally '
' FieldStr '
' InStrBack '
' Hex2Dec '
' Dec2Hex '
' Bin2Dec '
' Dec2Chr '
' Chr2Dec '
' Str2Chr '
' TestCharset '
' StringIsInt '
' StringIsLong '
'--'

'Font for easier custom-drawn text
Public Type TFnt
 'Parameters
 ForeColor As Long
 BackColor As Long
 FaceName As String
 Size As Long
 Weight As Long
 'Associated GDI objects - call CreateFnt to init
 fntFont As Long
 fntBrush As Long
 'Internal params
 fntCreated As Boolean 'to free it safely
End Type

'---'
' Public Sub Errr(msg As String) '
' '
' DESCRIPTION: '

' Displays an error messsage box with a red '
' error icon and an OK button. '
' '
' PARAMETERS: '
' msg - the message to be displayed. '
'---'
Public Sub Errr(Msg As String)
 Call MsgBox(Msg, vbOKOnly Or vbExclamation, "Error")
End Sub

'---'
' Public Function Tally(where As String, what As '
' String) '
' '
' DESCRIPTION: Counts the number of occurences of '
' What in Where. What should be one character '
' long only, or the function will return 0 '
'---'
Public Function Tally(where As String, what As String)
 Dim i As Integer, A As Integer
 A = 0
 For i = 1 To Len(where)
 If Mid(where, i, 1) = what Then A = A + 1
 Next
 Tally = A
End Function

'---'
' Public Function FieldStr(row As String, index '
' As Integer, separator As String) '
' '
' DESCRIPTION: Returns element number Index from '
' Row in which elements are separated by char '
' Separator. Separator should be 1 char long! '
'---'
Public Function FieldStr(row As String, Index As Integer,
separator As String)
 Dim i As Integer
 Dim s As String

CLab – Implementation Listings

 73

 s = row + separator
 For i = 0 To Index
 If i = Index Then
 s = Left(s, InStr(s, separator) - 1)
 GoTo finished
 End If
 s = Mid(s, InStr(s, separator) + 1)
 If s = "" Then
 s = ""
 GoTo finished
 End If
 Next

finished:
 FieldStr = s
End Function

'--------------------------------------'
' Public Function InStrBack(where As '
' String, what As String) As Integer '
' '
' DESCRIPTION: searches string where '
' for what starting at the end of '
' where. Returns offset of first '
' occurrence. '
'--------------------------------------'
Public Function InStrBack(where As String, what As String) As Integer
 Dim i As Integer
 For i = Len(where) To 1 Step -1
 If Mid(where, i, Len(what)) = what Then
 InStrBack = i
 Exit Function
 End If
 Next
 InStrBack = -1
End Function

'--'
' Public Function Hex2Dec(src As String) As Long '
' '
' DESCRIPTION: Converts hexadecimal number to '
' decimal. '
'--'
Public Function Hex2Dec(src As String) As Long
 Dim i As Long, A As Long, h16 As Long, Result As Long
 Dim s As String
 s = UCase(Mid(src, Len(src), 1))
 Result = IIf(s >= "0" And s <= "9", Asc(s) - 48, Asc(s) - 55)
 A = 1
 For i = Len(src) - 1 To 1 Step -1
 s = UCase(Mid(src, i, 1))
 h16 = IIf(s >= "0" And s <= "9", Asc(s) - 48, Asc(s) - 55)
 Result = Result + h16 * (16 ^ A)
 A = A + 1
 Next
 Hex2Dec = Result
End Function

'---'
' Public Function Dec2Hex(src As Long, lng '
' As Integer) As String '
' '
' DESCRIPTION: Converts decimal number src '
' to a hexadecimal number of given length '
'---'
Public Function Dec2Hex(src As Long, lng As Integer) As String
 Dim s As String
 s = Hex(src)
 While Len(s) < lng
 s = "0" + s
 Wend
 Dec2Hex = s
End Function

'--'
' Public Function Bin2Dec(src As String) As Long '
' '
' DESCRIPTION: Converts binary number to decimal '
'--'
Function Bin2Dec(src As String) As Long
 Dim i As Long, cost As Long, Result As Long
 cost = 1
 Result = 0
 For i = Len(src) To 1 Step -1
 Result = Result + (IIf(Mid(src, i, 1) = "0", 0, 1) * cost)
 cost = cost * 2
 Next
 Bin2Dec = Result

End Function

'---'
' Public Function Dec2Bin(src As Long, lng '
' As Integer) As String '
' '
' DESCRIPTION: Converts a denary number '
' into a binary number. '
'---'
Public Function Dec2Bin(src As Long, lng As Integer) As String
 Dim s As Long, o As Long, rs As String
 s = src
 rs = ""
 Do
 o = s
 s = s \ 2
 rs = IIf(s * 2 = o, "0", "1") + rs
 Loop While s > 0
 If Len(rs) < lng Then rs = String(lng - Len(rs), "0") + rs
 Dec2Bin = rs
End Function

'---'
' Public Function Dec2Chr(src As Long, lng '
' As Integer) As String '
' '
' DESCRIPTION: Converts decimal number src '
' to a string of chars (ie to base 256). '
' lng is the length of the resulting '
' string. The result is big-endian. '
'---'
Public Function Dec2Chr(src As Long, lng As Integer) As String
 Dim n As Integer, mysrc As Long, cn As Long, pwr As Long
 Dim s As String
 s = String(lng, "0")
 mysrc = src
 For n = lng - 1 To 0 Step -1
 pwr = 256 ^ n
 cn = Int(mysrc / pwr)
 Mid(s, lng - n, 1) = Chr(cn)
 mysrc = mysrc - (cn * pwr)
 Next
 Dec2Chr = s
End Function

'--'
' Public Function Chr2Dec(str As String) As Long '
' '
' DESCRIPTION: Converts a string of characters '
' to a number, interpreting the string as base '
' 256 big-endian number. '
'--'
Public Function Chr2Dec(str As String) As Long
 Dim i As Integer, l As Long
 l = 0
 For i = 1 To Len(str)
 l = l + Asc(Mid(str, i, 1)) * (256 ^ (Len(str) - i))
 Next
 Chr2Dec = l
End Function

'---'
' Function Str2Chr(src As String) As String '
' '
' DESCRIPTION: Formats the string src so '
' that each char is given by a hex number '
'---'
Function Str2Chr(src As String) As String
 Dim i As Integer, s As String, rslt As String
 rslt = ""
 For i = 1 To Len(src)
 s = Hex(Asc(Mid(src, i, 1)))
 If Len(s) < 2 Then s = "0" + s
 rslt = rslt + s + " "
 Next
 Str2Chr = rslt
End Function

'---'
' Function TestCharset(testwhat As String, _ '
' charset As String) As Boolean '
' '
' DESCRIPTION: Tests whether string testwhat '
' contains only allowed characters from charset '
' '
' RETURNS: True if testwhat contains only chars '
' from charset, False otherwise. '
'---'

CLab – Implementation Listings

 74

Function TestCharset(testwhat As String, charset As String) As
Boolean
 Dim i As Integer
 For i = 1 To Len(testwhat)
 If InStr(charset, Mid(testwhat, i, 1)) = 0 Then
 TestCharset = False
 GoTo tested
 End If
 Next
 TestCharset = True
tested:
End Function

'--'
' Function StringIsInt(s As String) As Boolean '
' '
' DESCRIPTION: Returns true if string can be '
' converted to type Integer. '
'--'
Function StringIsInt(s As String) As Boolean
 On Error GoTo strNotInt
 Dim i As Integer
 i = CInt(s)
 StringIsInt = True
 Exit Function
strNotInt:
 StringIsInt = False
End Function

'---'
' Function StringIsLong(s As String) As Boolean '
' '
' DESCRIPTION: Returns true if string can be '
' converted to type Long. '
'---'
Function StringIsLong(s As String) As Boolean
 On Error GoTo strNotLong
 Dim i As Long
 i = CLng(s)
 StringIsLong = True
 Exit Function
strNotLong:
 StringIsLong = False
End Function

Function GetFilename(Save As Boolean, ByRef FileName As String, _
 InitDir As String, Filter As String, _
 DefExt As String, Title As String) As Boolean

 'Fill open structure
 Dim o As OPENFILENAME
 o.lStructSize = 88 'Delphi's SizeOf(TOpenFilename)
 o.hInstance = 0
 o.lpstrFilter = Replace(Filter, "|", Chr(0)) + Chr(0) + Chr(0)
 o.nFilterIndex = 0
 o.nMaxFile = 260
 o.lpstrFile = FileName + String(262 - Len(FileName), Chr(0))
 o.lpstrInitialDir = InitDir
 o.lpstrTitle = Title
 o.lpstrDefExt = DefExt
 o.lpfnHook = 0&
 o.hwndOwner = 0
 If Save Then
 o.FLAGS = OFN_PATHMUSTEXIST + OFN_OVERWRITEPROMPT
 Else
 o.FLAGS = OFN_FILEMUSTEXIST
 End If

 'Return result
 If Save Then
 GetFilename = (GetSaveFileName(o) <> 0)
 Else
 GetFilename = (GetOpenFileName(o) <> 0)
 End If
 'Return file name
 If InStr(o.lpstrFile, Chr(0)) > 0 Then o.lpstrFile =
Left(o.lpstrFile, InStr(o.lpstrFile, Chr(0)) - 1)
 FileName = o.lpstrFile
End Function

Public Function AppDir() As String
 AppDir = App.Path + IIf(Right(App.Path, 1) = "\", "", "\")
End Function

Public Function Dec2Fmt16(num As Long, fmt As Integer) As String
 If fmt = 0 Then 'hex
 Dec2Fmt16 = Dec2Hex(num, 4) + "h"
 ElseIf fmt = 1 Then 'bin

 Dec2Fmt16 = "binary not supported yet"
 ElseIf fmt = 2 Then 'decU
 Dec2Fmt16 = CStr(num)
 ElseIf fmt = 3 Then 'decS
 Dec2Fmt16 = CStr(IIf(num >= 32768, -65536 + num, num))
 Else
 Dec2Fmt16 = "Invalid format number"
 End If
End Function

'---'
' Public Function IsFmt16(num As String) As Boolean '
' '
' RETURNS: True if operand is a 16-bit immediate '
' constant, and range checks are passed. '
'---'
Public Function IsFmt16(num As String) As Boolean
 On Error GoTo IsNot

 Dim s As String, testval As Long, minus As Boolean
 If Len(num) = 0 Then GoTo IsNot
 s = UCase(num)
 minus = False
 If Left(s, 1) = "-" Then
 If Len(s) = 1 Then GoTo IsNot
 s = Mid(s, 2)
 minus = True
 End If
 If Right(s, 1) = "H" Or Right(s, 1) = "B" Then If Len(s) = 1
Then GoTo IsNot
 'Check charset and try to convert (overflow will be trapped)
 If Right(s, 1) = "H" Then
 s = Left(s, Len(s) - 1)
 If Not TestCharset(s, "0123456789ABCDEF") Then GoTo IsNot
 testval = Hex2Dec(s)
 ElseIf Right(s, 1) = "B" Then
 s = Left(s, Len(s) - 1)
 If Not TestCharset(s, "01") Then GoTo IsNot
 testval = Bin2Dec(s)
 Else
 If Not TestCharset(s, "0123456789") Then GoTo IsNot
 testval = CLng(s)
 End If
 'Check range
 If minus Then testval = -testval
 If testval < -32768 Or testval > 65535 Then GoTo IsNot
 'Everything is fine
 IsFmt16 = True

 Exit Function
IsNot:
 IsFmt16 = False
End Function

'---'
'---'
Public Function Fmt2Dec16(c As String) As Long

 'Set an error trap and hope we checked C before calling this
 On Error GoTo HoustonWeVeGotAProblem

 'Prepare
 Dim s As String, minus As Boolean, n As Long
 s = UCase(c)
 minus = False
 If Left(s, 1) = "-" Then
 minus = True
 s = Mid(s, 2)
 End If
 'Convert
 If Right(s, 1) = "H" Then
 n = Hex2Dec(Left(s, Len(s) - 1))
 ElseIf Right(s, 1) = "B" Then
 n = Bin2Dec(Left(s, Len(s) - 1))
 Else
 n = CLng(s)
 End If
 'Deal with minus sign
 If minus Then n = -n
 'Return result
 Fmt2Dec16 = n

 Exit Function
HoustonWeVeGotAProblem:
 Fmt2Dec16 = -1 'should not happen unless IsFmt16 not called
before
End Function

CLab – Implementation Listings

 75

'---'
' Public Sub CreateFnt(ByRef Fnt As TFnt) '
' '
' Creates a font with those parameters '
' specified in Fnt, by creating required '
' GDI objects. '
'---'
Public Sub CreateFnt(ByRef Fnt As TFnt)
 'Font
 Fnt.fntFont = CreateFont(Fnt.Size, 0, 0, 0, Fnt.Weight, _
 False, False, False, 1, 0, 0, 0, 0, Fnt.FaceName)
 Dim LB As LOGBRUSH
 'Brush
 LB.lbColor = Fnt.BackColor: LB.lbHatch = 0: LB.lbStyle = 0
 Fnt.fntBrush = CreateBrushIndirect(LB)
 'Finished
 Fnt.fntCreated = True
End Sub

'--'

' Public Sub DestroyFnt(ByRef Fnt As TFnt) '
' '
' Destroys the given font by deleting GDI '
' objects that are associated with it. '
'--'
Public Sub DestroyFnt(ByRef Fnt As TFnt)
 If Not Fnt.fntCreated Then Exit Sub
 DeleteObject (Fnt.fntBrush)
 DeleteObject (Fnt.fntFont)
End Sub

Public Sub FntWrite(Fnt As TFnt, hdc As Long, str As String, rct
As RECT)
 'Draw text
 Call SelectObject(hdc, Fnt.fntFont)
 Call SetBkMode(hdc, TRANSPARENT)
 Call SetTextColor(hdc, Fnt.ForeColor)
 Call DrawText(hdc, str, Len(str), rct, 0)
End Sub

22.4. pCompile

Option Explicit

'--'
' Public declarations in this module: '
' '
' TYPES: '
' TPrg - assembly language program '
' '
' PROCEDURES: '
' cmpInit - initialises this module '
' PrgCompile - compiles a program '
' PrgLoad - loads a program into RAM '
' CreatePrg - inits TPrg structure '
' '
' VARIABLES: '
' Proj.P - program being worked on '
' '
' CONSTANTS: '
' CharsetLabel - charset for labels '
'--'

'--------------------------'
'--- Local declarations ---'
'--------------------------'

'Token type constants
Private Const tkUnknown = -1 'Used in the process of
tokenization
Private Const tkLabel = 0
Private Const tkVarDecl = 3
Private Const tkVarInit = 4
Private Const tkOpcode = 5
Private Const tkOperand = 6

'Token descriptions
Private tkName(-1 To 6) As String

'Opcode-to-machinecode reference structure
'Arrays of these structures are grouped by similarity in
compilation
Private Type TOpMCode
 Opcode As String
 Code As Byte
 Code2 As Byte
End Type

'List of type 0 opcodes (all operandless ones)
Private cdType0() As TOpMCode
'List op type 1 opcodes (bitwise shifts)
Private cdType1() As TOpMCode
'List op type 2 opcodes (4-way arithmetic & bitwise)
Private cdType2() As TOpMCode
'List op type 3 opcodes (inc,dec,neg,not,bswp)
Private cdType3() As TOpMCode
'List op type 4 opcodes (jmp, jxx, call)
Private cdType4() As TOpMCode

'Charset for label names
Public CharsetLabel As String

'Token structure - describes one token
Private Type TpToken
 Text As String 'eg MOV
 Type As Integer 'eg Operand (see constants above)
End Type

'Token line - array of tokens in one token line
Private Type TpTokenLine
 Token() As TpToken
 CodeLine As Integer
 CodeOffset As Integer
End Type

'Structure to store backpatch requests
Private Type TpBackpatch
 Name As String 'which variable's address needed
 Addr As Long 'where to write the address
 IsDW As Boolean 'true for absolute address
 RelTo As Long 'to calculate relative address
 CodeLine As Integer 'where requested
End Type

'Stores all references & their addresses
Private Type TpRef
 Name As String
 Addr As Long
 CodeLine As Integer 'where declared
End Type

'Error log
Private Type TpErrLog
 sError() As String 'Message
 lError() As Integer 'Line number
 nError() As String 'Error number
 sWarning() As String 'Message
 lWarning() As Integer 'Line number
 nWarning() As String 'Warning number
End Type

'Data about all declared variables
Private Type TpVars
 Name As String
 Addr As Long
End Type

'Assembly language program
Public Type TpPrg
 AsmLine() As String
 TknLine() As TpTokenLine
 Code As String
 Code_O2L() As Integer 'convert offset to source code line
 Code_L2O() As Integer 'convert source code line to offset

 Ref() As TpRef
 Backpatch() As TpBackpatch

 Vars() As TpVars 'Stores info about db/dw/ds
 ErrL As TpErrLog

CLab – Implementation Listings

 76

 CompileNeeded As Boolean 'True if Compile called after editing
End Type

'--------------------------'
' Public Sub cmpInit() '
' '
' Initializes this module '
'--------------------------'
Public Sub cmpInit()
 'Initialise charsets
 CharsetLabel =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890_-"
 'Init token names
 tkName(tkUnknown) = "unknown token"
 tkName(tkLabel) = "label"
 tkName(tkVarDecl) = "variable declaration"
 tkName(tkVarInit) = "variable initialisation"
 tkName(tkOpcode) = "opcode"
 tkName(tkOperand) = "operand"

 'Init opcode-to-machinecode array
 ReDim cdType0(0 To 19)
 cdType0(0).Opcode = "pushpc" 'MUST BE LOWERCASE!
 cdType0(0).Code = &H13
 cdType0(1).Opcode = "pushsp"
 cdType0(1).Code = &H14
 cdType0(2).Opcode = "pushfl"
 cdType0(2).Code = &H15
 cdType0(3).Opcode = "popsp"
 cdType0(3).Code = &H16
 cdType0(4).Opcode = "popfl"
 cdType0(4).Code = &H17
 cdType0(5).Opcode = "sp2b"
 cdType0(5).Code = &HF
 cdType0(6).Opcode = "stz"
 cdType0(6).Code = &H54
 cdType0(7).Opcode = "clz"
 cdType0(7).Code = &H55
 cdType0(8).Opcode = "stc"
 cdType0(8).Code = &H56
 cdType0(9).Opcode = "clc"
 cdType0(9).Code = &H57
 cdType0(10).Opcode = "sto"
 cdType0(10).Code = &H64
 cdType0(11).Opcode = "clo"
 cdType0(11).Code = &H65
 cdType0(12).Opcode = "sts"
 cdType0(12).Code = &H66
 cdType0(13).Opcode = "cls"
 cdType0(13).Code = &H67
 cdType0(14).Opcode = "sti"
 cdType0(14).Code = &H76
 cdType0(15).Opcode = "cli"
 cdType0(15).Code = &H77
 cdType0(16).Opcode = "ret"
 cdType0(16).Code = &H72
 cdType0(17).Opcode = "iret"
 cdType0(17).Code = &H73
 cdType0(18).Opcode = "halt"
 cdType0(18).Code = &H75
 cdType0(19).Opcode = "nop"
 cdType0(19).Code = &H8F
 'Init opcode-to-machinecode array
 ReDim cdType1(0 To 7)
 cdType1(0).Opcode = "lshl"
 cdType1(0).Code = &HC0
 cdType1(1).Opcode = "lshr"
 cdType1(1).Code = &HC1
 cdType1(2).Opcode = "ashl"
 cdType1(2).Code = &HC2
 cdType1(3).Opcode = "ashr"
 cdType1(3).Code = &HC3
 cdType1(4).Opcode = "rol"
 cdType1(4).Code = &HC4
 cdType1(5).Opcode = "ror"
 cdType1(5).Code = &HC5
 cdType1(6).Opcode = "rcl"
 cdType1(6).Code = &HC6
 cdType1(7).Opcode = "rcr"
 cdType1(7).Code = &HC7
 'Init opcode-to-machinecode array
 ReDim cdType2(0 To 13)
 cdType2(0).Opcode = "add"
 cdType2(0).Code = &H80
 cdType2(1).Opcode = "sub"
 cdType2(1).Code = &H83
 cdType2(2).Opcode = "adc"

 cdType2(2).Code = &H86
 cdType2(3).Opcode = "sbb"
 cdType2(3).Code = &H89
 cdType2(4).Opcode = "cmp"
 cdType2(4).Code = &H8C
 cdType2(5).Opcode = "mul"
 cdType2(5).Code = &H90
 cdType2(6).Opcode = "div"
 cdType2(6).Code = &H93
 cdType2(7).Opcode = "imul"
 cdType2(7).Code = &H96
 cdType2(8).Opcode = "idiv"
 cdType2(8).Code = &H99
 cdType2(9).Opcode = "mod"
 cdType2(9).Code = &H9C
 cdType2(10).Opcode = "and"
 cdType2(10).Code = &HB0
 cdType2(11).Opcode = "or"
 cdType2(11).Code = &HB3
 cdType2(12).Opcode = "xor"
 cdType2(12).Code = &HB6
 cdType2(13).Opcode = "test"
 cdType2(13).Code = &HB9
 'Init opcode-to-machinecode array
 ReDim cdType3(0 To 4)
 cdType3(0).Opcode = "inc"
 cdType3(0).Code = &HA0
 cdType3(0).Code2 = &HAC
 cdType3(1).Opcode = "dec"
 cdType3(1).Code = &HA4
 cdType3(1).Code2 = &HAD
 cdType3(2).Opcode = "neg"
 cdType3(2).Code = &HA8
 cdType3(2).Code2 = &HAE
 cdType3(3).Opcode = "not"
 cdType3(3).Code = &HBC
 cdType3(3).Code2 = &HAF
 cdType3(4).Opcode = "bswp"
 cdType3(4).Code = &HDC
 cdType3(4).Code2 = &H9F
 'Init opcode-to-machinecode array
 ReDim cdType4(0 To 13)
 cdType4(0).Opcode = "jmp"
 cdType4(0).Code = &H70
 cdType4(1).Opcode = "jg"
 cdType4(1).Code = &H40
 cdType4(2).Opcode = "jl"
 cdType4(2).Code = &H42
 cdType4(3).Opcode = "jge"
 cdType4(3).Code = &H43
 cdType4(4).Opcode = "jle"
 cdType4(4).Code = &H41
 cdType4(5).Opcode = "jz"
 cdType4(5).Code = &H50
 cdType4(6).Opcode = "jnz"
 cdType4(6).Code = &H51
 cdType4(7).Opcode = "jc"
 cdType4(7).Code = &H52
 cdType4(8).Opcode = "jnc"
 cdType4(8).Code = &H53
 cdType4(9).Opcode = "jo"
 cdType4(9).Code = &H60
 cdType4(10).Opcode = "jno"
 cdType4(10).Code = &H61
 cdType4(11).Opcode = "js"
 cdType4(11).Code = &H62
 cdType4(12).Opcode = "jns"
 cdType4(12).Code = &H63
 cdType4(13).Opcode = "call"
 cdType4(13).Code = &H71
End Sub

'------------------------------------'
' Private Sub ReadCodeIntoProj() '
' '
' Copies contents of fsCode.RTB into '
' the Proj structure '
'------------------------------------'
Private Sub ReadCodeIntoProj()
 'Initialise program
 ReDim Proj.P.AsmLine(-1 To -1)
 'Copy source text
 Dim i As Integer
 ReDim Proj.P.AsmLine(-1 To fsCode.RTB.Lines.Count - 1)
 For i = 0 To UBound(Proj.P.AsmLine)
 Proj.P.AsmLine(i) = fsCode.RTB.Lines.Item(i)

CLab – Implementation Listings

 77

 'If Right(Proj.P.AsmLine(i), 1) = Chr(13) Then
Proj.P.AsmLine(i) = Mid(Proj.P.AsmLine(i), 1,
Len(Proj.P.AsmLine(i)) - 1)
 Next
End Sub

'-------------------------------------'
' Public Sub PrgCompile() '
' '
' Compiles program in Proj, returning '
' machine code in p.Code '
'-------------------------------------'
Public Sub PrgCompile()
 'Load program into Proj
 ReadCodeIntoProj
 'Empty everything but AsmLine
 ReDim Proj.P.Ref(-1 To -1)
 ReDim Proj.P.TknLine(-1 To -1)
 ReDim Proj.P.Backpatch(-1 To -1)
 ReDim Proj.P.ErrL.lError(-1 To -1)
 ReDim Proj.P.ErrL.lWarning(-1 To -1)
 ReDim Proj.P.ErrL.nError(-1 To -1)
 ReDim Proj.P.ErrL.nWarning(-1 To -1)
 ReDim Proj.P.ErrL.sError(-1 To -1)
 ReDim Proj.P.ErrL.sWarning(-1 To -1)
 ReDim Proj.P.Code_O2L(-1 To -1)
 ReDim Proj.P.Code_L2O(-1 To -1)
 ReDim Proj.P.Vars(-1 To -1)
 Proj.P.Code = ""
 Proj.P.CompileNeeded = True
 'Compile
 Proj.P.CompileNeeded = False
 Call CompilePass1
 If UBound(Proj.P.ErrL.sError) = -1 Then Call CompilePass2
 If UBound(Proj.P.ErrL.sError) = -1 Then Call CompilePass3
 'Display errors
 Dim i As Integer
 fsCode.LErr.Clear
 For i = 0 To UBound(Proj.P.ErrL.sError)
 Call fsCode.LErr.AddItem("Error (" +
CStr(Proj.P.ErrL.lError(i) + 1) + "): " + Proj.P.ErrL.sError(i) +
" (" + Proj.P.ErrL.nError(i) + ").")
 Next
 'Display warnings
 For i = 0 To UBound(Proj.P.ErrL.sWarning)
 Call fsCode.LErr.AddItem("Warning (" +
CStr(Proj.P.ErrL.lWarning(i) + 1) + "): " +
Proj.P.ErrL.sWarning(i) + " (" + Proj.P.ErrL.nWarning(i) + ").")
 Next

 fiMain.UpdateAll True
End Sub

'--------------------------------'
' Public Sub PrgLoad '
' '
' Loads the program in Proj into '
' RAM at offset zero. '
'--------------------------------'
Public Sub PrgLoad()
 Dim i As Integer
 For i = 1 To Len(Proj.P.Code)
 Proj.RAM(i - 1) = Asc(Mid(Proj.P.Code, i, 1))
 Next
 fhRAM.Update
End Sub

'---'
' Private Sub CompilePass1() '
' '
' DESCRIPTION: Compilation pass 1: tokenize program '
' 1. Clean the source code '
' 2. Split every line into tokens '
' 3. Determine token types '
' 4. Token pattern analysis '
' 5. Preparations for variable compilation '
' '
' OUTPUT: Proj.P.Tkn* containing tokenized program. '
' Proj will be ready for CompilePass2 '
'---'
Private Sub CompilePass1()
 Dim i As Integer, A As Integer, nl As Integer
 Dim s As String
 With Proj.P

 '---------------------------'
 '--- Prepare to tokenize ---'
 '---------------------------'

 'Copy program to work on it (and do some processing in the
meantime)
 Dim sc_line() As Integer
 ReDim sc_line(-1 To UBound(.AsmLine))
 'nl = 0
 For i = 0 To UBound(.AsmLine)
 'Copy
 s = .AsmLine(i)
 'Remove comment
 A = InStr(s, ";")
 If A > 0 Then s = Left(s, A - 1)
 'Clean spaces
 s = CleanSpaces(s)
 'Trim
 s = Trim(s)
 'Save string
 .AsmLine(i) = s
 'Remember line number
 sc_line(i) = i
 'Increase nl to point to next line
 'nl = nl + 1
 Next

 '-------------------------'
 '--- Pure tokenization ---'
 '-------------------------'

 'Prepare Tokenized
 ReDim .TknLine(-1 To UBound(.AsmLine))

 'Tokenize
 nl = 0
 Dim sptr As Long, tmps As String, bs As Integer
 For i = 0 To UBound(.AsmLine)
 If .AsmLine(i) <> "" Then
 'Prep token line
 ReDim .TknLine(nl).Token(-1 To -1)
 .TknLine(nl).CodeLine = sc_line(i)
 'Get the tokens
 sptr = 1
 tmps = .AsmLine(i)
 Do While sptr <= Len(tmps)
 'Skip all spaces
 Do While (Mid(tmps, sptr, 1) = " " Or Mid(tmps, sptr, 1) =
Chr(9)) And sptr <= Len(tmps)
 sptr = sptr + 1
 Loop
 'Prep token
 ReDim Preserve .TknLine(nl).Token(-1 To
UBound(.TknLine(nl).Token) + 1)
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text = ""
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Type =
tkUnknown
 'Is it a string?
 If Mid(tmps, sptr, 1) = """" Then
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text =
""""
 sptr = sptr + 1
 If sptr > Len(tmps) Then GoTo dneS 'I know it's bad
programming but...
 bs = 0
 Do
 If Mid(tmps, sptr, 1) = """" Then
 bs = bs + 1
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text
= .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text + """"
 Else
 bs = 0
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text
= .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text + Mid(tmps,
sptr, 1)
 End If
 sptr = sptr + 1
 Loop Until ((bs \ 2 <> bs / 2) And (Mid(tmps, sptr, 1) =
"""")) Or (sptr > Len(tmps))
dneS:
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text =
.TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text + """"
 Else
 'There is no need for any advanced token splitting
 'in a language as simple as this. In an expression
 'like [b*c+4356h] we don't care that * and + should
 'be separate tokens - we don't need that. The only
 'reason to setup an algorithm like this which has the
 'power to tokenize like that is to recoginze strings.
 'Otherwise all we need is to separate tokens by the
 'fact that there is a whitespace inbetween them.

CLab – Implementation Listings

 78

 Do
 .TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text =
.TknLine(nl).Token(UBound(.TknLine(nl).Token)).Text + Mid(tmps,
sptr, 1)
 sptr = sptr + 1
 Loop Until (Mid(tmps, sptr, 1) = " ") Or (Mid(tmps,
sptr, 1) = Chr(9)) Or (sptr > Len(tmps))

 End If
 Loop

 'Increment nl
 nl = nl + 1
 End If
 Next
 'Truncate the program
 ReDim Preserve .TknLine(-1 To nl - 1)

 '----------------------------'
 '--- Token type detection ---'
 '----------------------------'

 Dim ft As Integer
 'Identify token types
 For i = 0 To UBound(.TknLine)
 'Indentify single tokens
 For A = 0 To UBound(.TknLine(i).Token)
 s = .TknLine(i).Token(A).Text
 If Right(s, 1) = ":" Then 'Label
 .TknLine(i).Token(A).Type = tkLabel
 ElseIf UCase(s) = "DB" Or UCase(s) = "DW" Or UCase(s) = "DS"
Then 'VarDecl
 .TknLine(i).Token(A).Type = tkVarDecl
 Else 'Everything else
 .TknLine(i).Token(A).Type = tkUnknown
 End If
 Next
 'Identify first token after all labels
 ft = -1
 For A = UBound(.TknLine(i).Token) To 0 Step -1
 If .TknLine(i).Token(A).Type <> tkLabel Then ft = A
 Next
 If ft = -1 Then GoTo alllabels
 'Use info about single tokens to further identify them
 If .TknLine(i).Token(ft).Type = tkUnknown Then
 'All tokens which are tkUnknown at this point are either
 ' opcode tokens or follow-up tokens. Therefore, if a
tkUnkown
 ' token is the first token, it is definitely tkOpcode
 .TknLine(i).Token(ft).Type = tkOpcode
 End If
 'Identify unknown follow-up tokens
 ' (all first tokens have been identified by now)
 If .TknLine(i).Token(ft).Type = tkVarDecl Then 'Variable
declaration
 For A = ft + 1 To UBound(.TknLine(i).Token)
 If .TknLine(i).Token(A).Type = tkUnknown Then
.TknLine(i).Token(A).Type = tkVarInit
 Next
 ElseIf .TknLine(i).Token(ft).Type = tkOpcode Then 'Opcode
 For A = ft + 1 To UBound(.TknLine(i).Token)
 If .TknLine(i).Token(A).Type = tkUnknown Then
.TknLine(i).Token(A).Type = tkOperand
 Next
 Else 'Error trap - just in case
 Errr ("pCompile.TokenizeCode: ft token is of an invalid
type. Contact the author.")
 Exit Sub
 End If
alllabels:
 Next

 'At this point there should be no tkUnknown tokens (in theory at
least)
 ' Now analyse token patterns to 1). adjust some patterns, 2).
pick
 ' up all invalid patterns

 '------------------------------'
 '--- Token pattern analysis ---'
 '------------------------------'

 'Calculate how many token lines we will have (depends on label
splitting)
 ft = 0 'store resulting number of token lines
 Dim b As Boolean
 For i = 0 To UBound(.TknLine)

 'A token line for every existing token line...
 ft = ft + 1
 '... plus a token line for every label in the line...
 b = False
 For A = 0 To UBound(.TknLine(i).Token)
 If .TknLine(i).Token(A).Type = tkLabel Then ft = ft + 1 Else
b = True
 Next
 '... minus a token line for every Label-only token line
 If Not b Then ft = ft - 1
 Next

 'Declare and dimension intermediary array
 Dim tkl() As TpTokenLine
 ReDim tkl(-1 To ft - 1)

 'Go through current tokens
 nl = 0 'next free token line in tkn
 For i = 0 To UBound(.TknLine)
 '---------------------------------'
 '-- STAGE ONE: deal with labels --'
 '---------------------------------'

 'Issue label warnings and separate the labels
 b = False
 ft = 0 'number of non-label tokens
 For A = 0 To UBound(.TknLine(i).Token)
 If .TknLine(i).Token(A).Type <> tkLabel Then
 b = True
 ft = ft + 1
 Else
 'Warning
 If b Then Call AddWng("Labels must not be preceded by
other tokens. Label moved to beginning of line. Offending label:
""" + .TknLine(i).Token(A).Text + """", .TknLine(i).CodeLine,
"WC1001")
 'Separation
 ReDim tkl(nl).Token(-1 To 0)
 tkl(nl).CodeLine = .TknLine(i).CodeLine
 tkl(nl).Token(0).Text = .TknLine(i).Token(A).Text
 tkl(nl).Token(0).Type = .TknLine(i).Token(A).Type
 'Take next line in tkn
 nl = nl + 1
 End If
 Next
 'Store the rest (if anything)
 If ft > 0 Then
 ReDim tkl(nl).Token(-1 To ft - 1)
 tkl(nl).CodeLine = .TknLine(i).CodeLine
 ft = 0 'next available token in tkl(nl).Token()
 For A = 0 To UBound(.TknLine(i).Token)
 If .TknLine(i).Token(A).Type <> tkLabel Then
 tkl(nl).Token(ft).Text = .TknLine(i).Token(A).Text
 tkl(nl).Token(ft).Type = .TknLine(i).Token(A).Type
 ft = ft + 1
 End If
 Next
 'nl = nl + 1 DO NOT INCREMENT - STILL WORKING ON IT
 Else
 'In order to avoid doing the rest in this IF block go to the
 'end of the loop when there's nothing left to process
 GoTo nnext
 End If

 'CAUTION! Now the rest of the work should be done on tkl(nl)
 'NL SHOULD BE INCREMENTED AT THE END!

 '----------------------------------'
 '-- STAGE TWO: deal with vardecl --'
 '----------------------------------'

 If UBound(tkl(nl).Token) + 1 = 1 Then
 If tkl(nl).Token(0).Type = tkVarDecl Then
 'Issue a warning
 Call AddWng("Variable not initialised explicitly. Assuming
uninitialised variable.", tkl(nl).CodeLine, "WC1002")
 'Add a proper token
 .TknLine(i).Token(0).Text = tkl(nl).Token(0).Text
 .TknLine(i).Token(0).Type = tkl(nl).Token(0).Type
 ReDim tkl(nl).Token(-1 To 1)
 tkl(nl).CodeLine = .TknLine(i).CodeLine
 tkl(nl).Token(0).Text = .TknLine(i).Token(0).Text
 tkl(nl).Token(0).Type = .TknLine(i).Token(0).Type
 tkl(nl).Token(1).Text = "?"
 tkl(nl).Token(1).Type = tkVarInit
 End If
 End If

CLab – Implementation Listings

 79

 '---------------------------------'
 '-- STAGE THREE: check patterns --'
 '---------------------------------'

 b = False
 If UBound(tkl(nl).Token) + 1 = 1 Then
 If tkl(nl).Token(0).Type = tkLabel Or tkl(nl).Token(0).Type
= tkOpcode Then
 b = True
 Else
 If tkl(nl).Token(0).Type = tkVarDecl Then
 s = "a variable declaration without initialisation"
'this is pretty much impossible
 ElseIf tkl(nl).Token(0).Type = tkVarInit Then
 s = "variable initialisation" 'same as above
 ElseIf tkl(nl).Token(0).Type = tkOperand Then
 s = "an operand" 'same as above
 Else
 s = "an unknown token" 'same as above
 End If
 'Because the tokenization procedure should not allow for
any
 'of these errors, this is an internal error
 Call Errr("pCompile.TokenizeCode: Internal Error (" +
CStr(tkl(nl).CodeLine) + "): a line cannot start with " + s + ".
Contact the author.")
 End If
 ElseIf UBound(tkl(nl).Token) + 1 = 2 Then
 If tkl(nl).Token(0).Type = tkOpcode And
tkl(nl).Token(1).Type = tkOperand Then
 b = True
 ElseIf tkl(nl).Token(0).Type = tkVarDecl And
tkl(nl).Token(1).Type = tkVarInit Then
 b = True
 Else
 Call AddErr("Invalid token combination: """ +
tkName(tkl(nl).Token(0).Type) + """ and """ +
tkName(tkl(nl).Token(1).Type) + """", tkl(nl).CodeLine, "EC1002")
 End If
 ElseIf UBound(tkl(nl).Token) + 1 = 3 Then
 If tkl(nl).Token(0).Type = tkOpcode And
tkl(nl).Token(1).Type = tkOperand And tkl(nl).Token(2).Type =
tkOperand Then
 b = True
 Else
 Call AddErr("Invalid token combination: """ +
tkName(tkl(nl).Token(0).Type) + """, """ +
tkName(tkl(nl).Token(1).Type) + """ and """ +
tkName(tkl(nl).Token(1).Type) + """", tkl(nl).CodeLine, "EC1003")
 End If
 ElseIf UBound(tkl(nl).Token) + 1 > 3 Then
 Call AddErr("A line cannot contain more than three tokens.
This line contains " + CStr(UBound(tkl(nl).Token) + 1) + "
tokens.", tkl(nl).CodeLine, "EC1004")
 Else
 Call Errr("pCompile.CompilePass1: token line with less than
1 token encountered. Contact the author.")
 End If
 'Skip next stage if token line is not valid
 If Not b Then nl = nl + 1: GoTo nnext

 nl = nl + 1
nnext:
 Next

 '------------------'
 '--- Return tkn ---'
 '------------------'

 'Check if nl is what we thought it would be
 If nl <> UBound(tkl) + 1 Then
 Call Errr("pCompile.TokenizeCode: Internal Error (N/A):
predicted token line count is not equal to actual token line
count. Contact the author.")
 End If

 ReDim .TknLine(-1 To nl - 1)
 For i = 0 To UBound(.TknLine)
 ReDim .TknLine(i).Token(-1 To UBound(tkl(i).Token))
 .TknLine(i).CodeLine = tkl(i).CodeLine
 For A = 0 To UBound(.TknLine(i).Token)
 .TknLine(i).Token(A).Text = tkl(i).Token(A).Text
 .TknLine(i).Token(A).Type = tkl(i).Token(A).Type
 Next
 Next

 '---------------------------'
 '--- Deal with variables ---'

 '---------------------------'

 'After this stage every OFFSET(varX) will be replaced with varX
 'and every varX with [varX]
 Dim acc As String, doing As Boolean

 For i = 0 To UBound(.TknLine)
 For A = 0 To UBound(.TknLine(i).Token)
 If .TknLine(i).Token(A).Type = tkOperand Then
 'Get the string to analyse
 s = .TknLine(i).Token(A).Text
 'Go through every symbol, accumulating segments separated
 'by one of []+* into acc
 acc = ""
 doing = Not TestCharset(Right(s, 1), "[]+*")
 For nl = Len(s) To 1 Step -1
 If TestCharset(Mid(s, nl, 1), "[]+*") Then
 'Acc contains a chunk. Work on it in DoItGoSub
 If doing Then GoSub DoItGoSub
 doing = True
 acc = ""
 Else
 'Just keep accumulating acc
 If doing Then acc = Mid(s, nl, 1) + acc
 End If
 Next
 'Run it once at the end in case s doesn't end with any of
[]+*
 GoSub DoItGoSub
 GoTo EndOfGoSub
DoItGoSub:
 'Analyse
 If UCase(Left(acc, 7)) = "OFFSET(" And Right(acc, 1) = ")"
Then
 'Have an offset. Remove OFFSET() completely
 s = Left(s, nl) + Mid(acc, 8, Len(acc) - 8) + Mid(s, nl
+ Len(acc) + 1)
 ElseIf Not OperandIsRg(acc) Then
 'Have either a number or a variable name
 If Not TestCharset(Left(acc, 1), "-0123456789") Then
 'Definitely not a number. Enclose in []
 s = Left(s, nl) + "[" + acc + "]" + Mid(s, nl +
Len(acc) + 1)
 End If
 End If
 Return
EndOfGoSub:
 'Save the analysed string back
 .TknLine(i).Token(A).Text = s
 End If
 Next
 Next

 End With
End Sub

'---'
' Private Sub CompilePass2() '
' '
' DESCRIPTION: Compilation pass 2: code generation '
' 1. Generate code for all correct instructions '
' 2. Generate errors/warnings for incorrect instructions '
' 3. Generate a label-to-address list used in backpatching '
' 4. Generate a "variable requested" list for backpatching '
' '
' PARAMETERS: '
' p - should contain tokenized program (Tkn*) '
' '
' OUTPUT: p.Code containing compiled machine code. '
'---'
Private Sub CompilePass2()
 Dim tli As Integer 'token line loop var
 Dim tl As TpTokenLine 'current token line
 Dim ctl As String 'compiled token line

 Dim i As Integer, l1 As Long, l2 As Long, l3 As Long
 Dim t As String, s As String

 With Proj.P

 'Initialise structures
 .Code = ""
 ReDim .Ref(-1 To -1)

 'Loop through all token lines
 For tli = 0 To UBound(.TknLine)
 tl.CodeLine = .TknLine(tli).CodeLine
 tl.CodeOffset = .TknLine(tli).CodeOffset

CLab – Implementation Listings

 80

 tl.Token = .TknLine(tli).Token
 ctl = ""
 'Store offset of the beginning of the token line
 .TknLine(tli).CodeOffset = Len(.Code)

 '=='
 '=='
 '=='
 '=='

 'Validity check
 If UBound(tl.Token) < 0 Then
 Call Errr("pCompile.CompilePass2: empty token line at
compilation stage 2. Contact the author.")
 Exit Sub
 End If

 '-------------------'
 '=== LABEL TOKEN ==='
 '-------------------'
 If tl.Token(0).Type = tkLabel Then
 'Check label name
 If Not TestCharset(Left(tl.Token(0).Text,
Len(tl.Token(0).Text) - 1), CharsetLabel) Then
 Call AddErr("Invalid label name - '" +
Left(tl.Token(0).Text, Len(tl.Token(0).Text) - 1) + "'",
tl.CodeLine, "EC2008")
 GoTo NextTokenLine
 End If
 If UCase(tl.Token(0).Text) = "A" Or UCase(tl.Token(0).Text) =
"B" Or UCase(tl.Token(0).Text) = "C" Or UCase(tl.Token(0).Text) =
"D" Or UCase(tl.Token(0).Text) = "E" Then
 Call AddErr("Label name cannot be same as register name - '"
+ Left(tl.Token(0).Text, Len(tl.Token(0).Text) - 1) + "'",
tl.CodeLine, "EC2009")
 GoTo NextTokenLine
 End If
 'Add reference
 ReDim Preserve .Ref(-1 To UBound(.Ref) + 1)
 .Ref(UBound(.Ref)).Addr = Len(.Code)
 .Ref(UBound(.Ref)).Name = Left(tl.Token(0).Text,
Len(tl.Token(0).Text) - 1)
 .Ref(UBound(.Ref)).CodeLine = tl.CodeLine
 GoTo NextTokenLine
 End If

 '---------------------'
 '=== VARDECL TOKEN ==='
 '---------------------'
 If tl.Token(0).Type = tkVarDecl Then
 If UCase(tl.Token(0).Text) = "DB" Then 'Byte variable
 If OperandIsIm8(tl.Token(1).Text) Then
 ctl = Chr(CIm8(tl.Token(1).Text, Len(.Code), Len(.Code),
tl.CodeLine))
 ElseIf tl.Token(1).Text = "?" Then
 ctl = Chr(0)
 Else
 Call AddErr("Variable initialisation sequence is neither
'?' nor a valid constant.", tl.CodeLine, "EC2002")
 End If
 ElseIf UCase(tl.Token(0).Text) = "DW" Then 'Word variable
 'Store reference
 ReDim Preserve .Vars(-1 To UBound(.Vars) + 1)
 .Vars(UBound(.Vars)).Addr = Len(.Code)
 'Compile
 If OperandIsIm16(tl.Token(1).Text) Then
 'Initialisation can be a variable offset.We don't mind
 'if it is - CIm16 would just add a ref for a backpatch
 ctl = Dec2Chr(CIm16(tl.Token(1).Text, Len(.Code),
tl.CodeLine), 2)
 ElseIf tl.Token(1).Text = "?" Then
 ctl = Chr(0) + Chr(0)
 Else
 Call AddErr("Variable initialisation sequence is neither
'?' nor a valid constant.", tl.CodeLine, "EC2002")
 End If
 Else 'String literal
 If Left(tl.Token(1).Text, 1) = """" And
Right(tl.Token(1).Text, 1) = """" Then
 ctl = Replace(Mid(tl.Token(1).Text, 2,
Len(tl.Token(1).Text) - 2), """""", """")
 ElseIf tl.Token(1).Text = "?" Then
 ctl = ""
 Else
 Call AddErr("DS variable should be initialised with either
? or a string literal enclosed with """".", tl.CodeLine, "EC2019")
 End If
 End If

 GoTo NextTokenLine
 End If

 '--------------------'
 '=== OPCODE TOKEN ==='
 '--------------------'
 If tl.Token(0).Type <> tkOpcode Then
 Errr ("pCompile.CompilePass2: first token in token line is not
opcode. Contact the author.")
 Exit Sub
 End If

 'Opcode name
 t = LCase(tl.Token(0).Text)

 '----------------------'
 '--- Type 0 opcodes ---'
 '----------------------'
 For i = 0 To UBound(cdType0)
 If t = cdType0(i).Opcode Then
 If UBound(tl.Token) + 1 > 1 Then
 Call AddErr("Opcode takes 0 operands, not " +
CStr(UBound(tl.Token) + 1) + ".", tl.CodeLine, "EC2001")
 ctl = ""
 Else
 ctl = Chr(cdType0(i).Code)
 End If
 GoTo NextTokenLine
 End If
 Next

 '----------------------'
 '--- Type 1 opcodes ---'
 '----------------------'
 For i = 0 To UBound(cdType1)
 If t = cdType1(i).Opcode Then '(lshr,ashl,rol,rcl etc)
 'Check param count
 If UBound(tl.Token) + 1 <> 3 Then
 Call AddErr("Opcode takes 2 operands, not " +
CStr(UBound(tl.Token) + 1) + ".", tl.CodeLine, "EC2001")
 ctl = ""
 GoTo NextTokenLine
 End If
 'Compile depending on type
 If UCase(tl.Token(1).Text) = "A" And
OperandIsRgn(tl.Token(2).Text) Then
 'A/Rg
 l1 = (Asc(UCase(tl.Token(2).Text)) - 66) * 32
 ctl = Chr(cdType1(i).Code) + Chr(l1)
 ElseIf OperandIsRg(tl.Token(1).Text) Then
 'Rg/N
 If Not StringIsInt(tl.Token(2).Text) Then
 Call AddErr("Syntax error in operand OR opcode and
operand incompatible. Offending operand: '" + tl.Token(2).Text +
"'.", tl.CodeLine, "EC2005")
 ctl = ""
 GoTo NextTokenLine
 End If
 l1 = CInt(tl.Token(2).Text)
 If l1 < 0 Or l1 > 15 Then
 Call AddErr("The number of shift cycles must be between
0 and 15.", tl.CodeLine, "EC2006")
 ctl = ""
 GoTo NextTokenLine
 End If
 l2 = 128 + l1
 l3 = (Asc(UCase(tl.Token(1).Text)) - 66) * 32
 If UCase(tl.Token(1).Text) = "A" Then l2 = l2 + 16 Else l2
= l2 + l3
 ctl = Chr(cdType1(i).Code) + Chr(l2)
 Else
 'Error
 If UCase(tl.Token(1).Text) = "A" Then
 Call AddErr("Syntax error in operand OR opcode and
operand incompatible. Offending operand: '" + tl.Token(2).Text +
"'.", tl.CodeLine, "EC2005")
 Else
 Call AddErr("Syntax error in operand OR opcode and
operand incompatible. Offending operand: '" + tl.Token(1).Text +
"'.", tl.CodeLine, "EC2005")
 End If
 ctl = ""
 GoTo NextTokenLine
 End If
 GoTo NextTokenLine
 End If
 Next

CLab – Implementation Listings

 81

 '----------------------'
 '--- Type 2 opcodes ---'
 '----------------------'
 For i = 0 To UBound(cdType2)
 If t = cdType2(i).Opcode Then '(and,or,add,sub etc)
 'Check param count
 If UBound(tl.Token) + 1 <> 3 Then
 Call AddErr("Opcode takes 2 operands, not " +
CStr(UBound(tl.Token) + 1) + ".", tl.CodeLine, "EC2001")
 ctl = ""
 GoTo NextTokenLine
 End If
 'Compile depending on type
 l1 = 0
 If (OperandIsRg(tl.Token(2).Text) And
UCase(tl.Token(1).Text) = "A") Then
 'A/Rg
 If UCase(tl.Token(2).Text) = "A" Then l1 = 4 Else l1 =
(Asc(UCase(tl.Token(2).Text)) - 66)
 ctl = Chr(cdType2(i).Code) + Chr(l1)
 ElseIf (OperandIsRg(tl.Token(1).Text) And
UCase(tl.Token(2).Text) = "A") Then
 'Rg/A
 If UCase(tl.Token(1).Text) = "A" Then l1 = 4 Else l1 =
(Asc(UCase(tl.Token(1).Text)) - 66)
 l1 = l1 + 8
 ctl = Chr(cdType2(i).Code) + Chr(l1)
 ElseIf UCase(tl.Token(1).Text) = "A" And
OperandIsIm16(tl.Token(2).Text) Then
 'A/I
 l1 = CIm16(tl.Token(2).Text, Len(ctl) + 1, tl.CodeLine)
 If l1 >= 0 And l1 <= 65535 Then
 ctl = Chr(cdType2(i).Code + 1) + Dec2Chr(l1, 2)
 Else
 Call AddErr("16 bit immediate constant is out of
range.", tl.CodeLine, "EC2007")
 ctl = ""
 End If
 ElseIf UCase(tl.Token(1).Text) = "A" And
OperandIsMem(tl.Token(2).Text) Then
 'A/M
 ctl = CompileMemoryAddressing(tl.Token(2).Text, Len(.Code)
+ 1, tl.CodeLine)
 If ctl <> "" Then
 ctl = Chr(cdType2(i).Code + 2) + ctl
 End If
 Else
 If UCase(tl.Token(1).Text) = "A" Or
OperandIsRg(tl.Token(1).Text) Then
 Call AddErr("Syntax error in operand OR opcode and
operand incompatible. Offending operand: '" + tl.Token(2).Text +
"'.", tl.CodeLine, "EC2005")
 Else
 Call AddErr("Syntax error in operand OR opcode and
operand incompatible. Offending operand: '" + tl.Token(1).Text +
"'.", tl.CodeLine, "EC2005")
 End If
 ctl = ""
 End If
 GoTo NextTokenLine
 End If
 Next

 '----------------------'
 '--- Type 3 opcodes ---'
 '----------------------'
 For i = 0 To UBound(cdType3)
 If t = cdType3(i).Opcode Then '(inc,dec,neg,not,bswp)
 If UBound(tl.Token) + 1 <> 2 Then
 Call AddErr("Opcode takes 1 operand, not " +
CStr(UBound(tl.Token) + 1) + ".", tl.CodeLine, "EC2001")
 ctl = ""
 GoTo NextTokenLine
 End If
 If OperandIsRgn(tl.Token(1).Text) Then
 ctl = Chr(cdType3(i).Code + (Asc(UCase(tl.Token(1).Text))
- 66))
 ElseIf UCase(tl.Token(1).Text) = "A" Then
 ctl = Chr(cdType3(i).Code2)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If
 Next

 '----------------------'
 '--- Type 4 opcodes ---'
 '----------------------'
 For i = 0 To UBound(cdType4)
 If t = cdType4(i).Opcode Then '(jmp, jXX, call)
 If UBound(tl.Token) + 1 <> 2 Then
 Call AddErr("Opcode takes 1 operand, not " +
CStr(UBound(tl.Token) + 1) + ".", tl.CodeLine, "EC2001")
 ctl = ""
 GoTo NextTokenLine
 End If
 s = tl.Token(1).Text
 If OperandIsMem(s) Then
 ctl = Chr(cdType4(i).Code) +
CompileMemoryAddressing(tl.Token(1).Text, Len(.Code) + 1,
tl.CodeLine)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If
 Next

 '``````````'
 '``` LD ```'
 '``````````'
 If t = "ld" Then
 If OperandIsIm16(tl.Token(2).Text) Then
 If OperandIsRgn(tl.Token(1).Text) Then
 'Rn/Im16
 ctl = Chr(&H20 + (Asc(UCase(tl.Token(1).Text)) - 66)) +
Dec2Chr(CIm16(tl.Token(2).Text, Len(.Code) + 1, tl.CodeLine), 2)
 ElseIf UCase(tl.Token(1).Text) = "A" Then
 'A/Im16
 ctl = Chr(&H24) + Dec2Chr(CIm16(tl.Token(2).Text,
Len(.Code) + 1, tl.CodeLine), 2)
 ElseIf OperandIsMem(tl.Token(1).Text) Then
 Call AddErr("Cannot load a constant into a memory cell
directly.", tl.CodeLine, "EC2014")
 ctl = ""
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 ElseIf OperandIsRg(tl.Token(1).Text) And
OperandIsRg(tl.Token(2).Text) Then
 'R/R
 l1 = 0
 If UCase(tl.Token(1).Text) = "A" Then l1 = l1 + 128 Else l1
= l1 + (Asc(UCase(tl.Token(1).Text)) - 66) * 8
 If UCase(tl.Token(2).Text) = "A" Then l1 = l1 + 64 Else l1 =
l1 + (Asc(UCase(tl.Token(2).Text)) - 66)
 ctl = Chr(&H25) + Chr(l1)
 ElseIf OperandIsRg(tl.Token(1).Text) And
OperandIsMem(tl.Token(2).Text) Then
 'R/Mem
 If UCase(tl.Token(1).Text) = "A" Then l1 = 4 Else l1 =
(Asc(UCase(tl.Token(1).Text)) - 66)
 ctl = Chr(&H26) + Chr(l1) +
CompileMemoryAddressing(tl.Token(2).Text, Len(.Code) + 2,
tl.CodeLine)
 ElseIf OperandIsRg(tl.Token(2).Text) And
OperandIsMem(tl.Token(1).Text) Then
 'Mem/R
 If UCase(tl.Token(2).Text) = "A" Then l1 = 4 Else l1 =
(Asc(UCase(tl.Token(2).Text)) - 66)
 ctl = Chr(&H27) + Chr(l1) +
CompileMemoryAddressing(tl.Token(1).Text, Len(.Code) + 2,
tl.CodeLine)
 Else
 If OperandIsIm16(tl.Token(1).Text) Then
 Call AddErr("Cannot load into a constant (first operand
cannot be a constant).", tl.CodeLine, "EC2013")
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: check both.", tl.CodeLine,
"EC2005")
 End If
 ctl = ""
 End If

 GoTo NextTokenLine

CLab – Implementation Listings

 82

 End If

 '``````````'
 '``` ST ```'
 '``````````'
 If t = "st" Then
 If OperandIsIm16(tl.Token(1).Text) Then
 If OperandIsRgn(tl.Token(2).Text) Then
 'Im16/Rn
 ctl = Chr(&H30 + (Asc(UCase(tl.Token(2).Text)) - 66)) +
Dec2Chr(CIm16(tl.Token(1).Text, Len(.Code) + 1, tl.CodeLine), 2)
 ElseIf UCase(tl.Token(2).Text) = "A" Then
 'Im16/A
 ctl = Chr(&H34) + Dec2Chr(CIm16(tl.Token(1).Text,
Len(.Code) + 1, tl.CodeLine), 2)
 ElseIf OperandIsMem(tl.Token(2).Text) Then
 Call AddErr("Cannot store a constant in a memory cell
directly.", tl.CodeLine, "EC2016")
 ctl = ""
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(2).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 ElseIf OperandIsRg(tl.Token(2).Text) And
OperandIsRg(tl.Token(1).Text) Then
 'R/R
 l1 = 0
 If UCase(tl.Token(2).Text) = "A" Then l1 = l1 + 128 Else l1
= l1 + (Asc(UCase(tl.Token(2).Text)) - 66) * 8
 If UCase(tl.Token(1).Text) = "A" Then l1 = l1 + 64 Else l1 =
l1 + (Asc(UCase(tl.Token(1).Text)) - 66)
 ctl = Chr(&H35) + Chr(l1)
 ElseIf OperandIsRg(tl.Token(2).Text) And
OperandIsMem(tl.Token(1).Text) Then
 'Mem/R
 If UCase(tl.Token(2).Text) = "A" Then l1 = 4 Else l1 =
(Asc(UCase(tl.Token(2).Text)) - 66)
 ctl = Chr(&H36) + Chr(l1) +
CompileMemoryAddressing(tl.Token(1).Text, Len(.Code) + 2,
tl.CodeLine)
 ElseIf OperandIsRg(tl.Token(1).Text) And
OperandIsMem(tl.Token(2).Text) Then
 'R/Mem
 If UCase(tl.Token(1).Text) = "A" Then l1 = 4 Else l1 =
(Asc(UCase(tl.Token(1).Text)) - 66)
 ctl = Chr(&H37) + Chr(l1) +
CompileMemoryAddressing(tl.Token(2).Text, Len(.Code) + 2,
tl.CodeLine)
 Else
 If OperandIsIm16(tl.Token(2).Text) Then
 Call AddErr("Cannot store in a constant (second operand
cannot be a constant).", tl.CodeLine, "EC2015")
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: check both.", tl.CodeLine,
"EC2005")
 End If
 ctl = ""
 End If

 GoTo NextTokenLine
 End If

 '``` PUSH ```'
 If t = "push" Then
 If UCase(tl.Token(1).Text) = "A" Then
 'push A
 ctl = Chr(&H10)
 ElseIf OperandIsRgn(tl.Token(1).Text) Then
 'push Rn
 ctl = Chr(0 + Asc(UCase(tl.Token(1).Text)) - 66)
 ElseIf OperandIsIm16(tl.Token(1).Text) Then
 'push I
 ctl = Chr(&H12) + Dec2Chr(CIm16(tl.Token(1).Text, Len(.Code)
+ 1, tl.CodeLine), 2)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 '``` POP ```'
 If t = "pop" Then

 If UCase(tl.Token(1).Text) = "A" Then
 'pop A
 ctl = Chr(&H11)
 ElseIf OperandIsRgn(tl.Token(1).Text) Then
 'pop Rn
 ctl = Chr(4 + Asc(UCase(tl.Token(1).Text)) - 66)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 '``` LEA ```'
 If t = "lea" Then
 If UCase(tl.Token(1).Text) = "A" Then
 'lea A,M
 ctl = Chr(&H2F) + CompileMemoryAddressing(tl.Token(2).Text,
Len(.Code) + 1, tl.CodeLine)
 ElseIf OperandIsRgn(tl.Token(1).Text) Then
 'lea Rn,M
 ctl = Chr(&H8 + Asc(UCase(tl.Token(1).Text)) - 66) +
CompileMemoryAddressing(tl.Token(2).Text, Len(.Code) + 1,
tl.CodeLine)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 '``` XCHG ```'
 If t = "xchg" Then
 If UCase(tl.Token(1).Text) = "A" Then
 'xchg A,Rn
 ctl = Chr(&HF0 + Asc(UCase(tl.Token(2).Text)) - 66)
 ElseIf UCase(tl.Token(2).Text) = "A" Then
 'xchg Rn,A
 ctl = Chr(&HF0 + Asc(UCase(tl.Token(1).Text)) - 66)
 ElseIf ((UCase(tl.Token(1).Text) = "C") And
(UCase(tl.Token(2).Text) = "D")) Or ((UCase(tl.Token(2).Text) =
"C") And (UCase(tl.Token(1).Text) = "D")) Then
 'xchg c,d
 ctl = Chr(&HE6)
 ElseIf ((UCase(tl.Token(1).Text) = "C") And
(UCase(tl.Token(2).Text) = "E")) Or ((UCase(tl.Token(2).Text) =
"C") And (UCase(tl.Token(1).Text) = "E")) Then
 'xchg c,e
 ctl = Chr(&HE7)
 ElseIf ((UCase(tl.Token(1).Text) = "D") And
(UCase(tl.Token(2).Text) = "E")) Or ((UCase(tl.Token(2).Text) =
"D") And (UCase(tl.Token(1).Text) = "E")) Then
 'xchg d,e
 ctl = Chr(&HF4)
 ElseIf ((UCase(tl.Token(1).Text) = "B") And
(UCase(tl.Token(2).Text) = "C")) Or ((UCase(tl.Token(2).Text) =
"B") And (UCase(tl.Token(1).Text) = "C")) Then
 'xchg b,c
 ctl = Chr(&HF5)
 ElseIf ((UCase(tl.Token(1).Text) = "B") And
(UCase(tl.Token(2).Text) = "D")) Or ((UCase(tl.Token(2).Text) =
"B") And (UCase(tl.Token(1).Text) = "D")) Then
 'xchg b,d
 ctl = Chr(&HF6)
 ElseIf ((UCase(tl.Token(1).Text) = "B") And
(UCase(tl.Token(2).Text) = "E")) Or ((UCase(tl.Token(2).Text) =
"B") And (UCase(tl.Token(1).Text) = "E")) Then
 'xchg b,e
 ctl = Chr(&HF7)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: check both.", tl.CodeLine,
"EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 '``` INT ```'
 If t = "int" Then
 If OperandIsIm8(tl.Token(1).Text) Then
 'int I8
 ctl = Chr(&H74) + CIm8(tl.Token(1).Text, Len(.Code) + 1,
Len(.Code) + 2, tl.CodeLine)

CLab – Implementation Listings

 83

 Else
 Call AddErr("Operand for INT must be an 8 bit immediate
constant.", tl.CodeLine, "EC2017")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 '``` IN ```'
 If t = "in" Then
 If OperandIsIm8(tl.Token(2).Text) Then
 If UCase(tl.Token(1).Text) = "A" Then
 'in A,I8
 ctl = Chr(&HE5) + Chr(CIm8(tl.Token(2).Text, Len(.Code) +
1, -1, tl.CodeLine))
 ElseIf OperandIsRgn(tl.Token(1).Text) Then
 'in Rn,I8
 ctl = Chr(&HD8 + Asc(UCase(tl.Token(1).Text)) - 66) +
Chr(CIm8(tl.Token(2).Text, Len(.Code) + 1, -1, tl.CodeLine))
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 ElseIf OperandIsRg(tl.Token(2).Text) Then
 If OperandIsRg(tl.Token(1).Text) Then
 'in R1,R2
 If UCase(tl.Token(1).Text) = "A" Then l1 = 32 Else l1 =
(Asc(UCase(tl.Token(1).Text)) - 66) * 4
 If UCase(tl.Token(2).Text) = "A" Then l1 = l1 + 16 Else l1
= l1 + (Asc(UCase(tl.Token(2).Text)) - 66)
 ctl = Chr(&HE4) + Chr(l1)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 ElseIf OperandIsIm16(tl.Token(2).Text) Then
 Call AddErr("Port address must be an 8 bit immediate
constant (0 to 255).", tl.CodeLine, "EC2018")
 ctl = ""
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(2).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 '``` OUT ```'
 If t = "out" Then
 If OperandIsRg(tl.Token(1).Text) And
OperandIsRg(tl.Token(2).Text) Then
 'out R1,R2
 If UCase(tl.Token(1).Text) = "A" Then l1 = 32 Else l1 =
(Asc(UCase(tl.Token(1).Text)) - 66) * 4
 If UCase(tl.Token(2).Text) = "A" Then l1 = l1 + 16 Else l1 =
l1 + (Asc(UCase(tl.Token(2).Text)) - 66)
 ctl = Chr(&HD4) + Chr(l1)
 ElseIf OperandIsIm8(tl.Token(1).Text) And
OperandIsIm16(tl.Token(2).Text) Then
 'out I8,I
 ctl = Chr(&HD7) + Chr(CIm8(tl.Token(1).Text, Len(.Code) + 1,
-1, tl.CodeLine)) + Dec2Chr(CIm16(tl.Token(2).Text, Len(.Code) +
2, tl.CodeLine), 2)
 ElseIf OperandIsIm16(tl.Token(1).Text) And
OperandIsIm16(tl.Token(2).Text) Then
 Call AddErr("Port address has to be an 8 bit immediate
constant (0 to 255).", tl.CodeLine, "EC2018")
 ctl = ""
 ElseIf OperandIsIm16(tl.Token(2).Text) Then
 If UCase(tl.Token(1).Text) = "A" Then
 'out A,I
 ctl = Chr(&HD5) + Dec2Chr(CIm16(tl.Token(2).Text,
Len(.Code) + 1, tl.CodeLine), 2)
 ElseIf OperandIsRgn(tl.Token(1).Text) Then
 'out R,I
 ctl = Chr(&HE0 + Asc(UCase(tl.Token(1).Text)) - 66) +
Dec2Chr(CIm16(tl.Token(2).Text, Len(.Code) + 1, tl.CodeLine), 2)
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(1).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If

 ElseIf OperandIsIm8(tl.Token(1).Text) Then
 If UCase(tl.Token(2).Text) = "A" Then
 'out I8,A
 ctl = Chr(&HD6) + Chr(CIm8(tl.Token(1).Text, Len(.Code) +
1, -1, tl.CodeLine))
 ElseIf OperandIsRgn(tl.Token(2).Text) Then
 'out I8,R
 ctl = Chr(&HD0 + Asc(UCase(tl.Token(2).Text)) - 66) +
Chr(CIm8(tl.Token(1).Text, Len(.Code) + 1, -1, tl.CodeLine))
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: '" + tl.Token(2).Text + "'.",
tl.CodeLine, "EC2005")
 ctl = ""
 End If
 ElseIf OperandIsIm16(tl.Token(1).Text) Then
 Call AddErr("Port address has to be an 8 bit immediate
constant (0 to 255).", tl.CodeLine, "EC2018")
 ctl = ""
 Else
 Call AddErr("Syntax error in operand OR opcode and operand
incompatible. Offending operand: check both.", tl.CodeLine,
"EC2005")
 ctl = ""
 End If
 GoTo NextTokenLine
 End If

 'All instruction processing should end with a GoTo
NextTokenLine.
 'So if we arrive here, opcode was not found. Add error message
 Call AddErr("Opcode not recognized: '" + t + "'. Check
spelling.", tl.CodeLine, "EC2010")

NextTokenLine:
 '=='
 '=='
 '=='
 '=='

 .Code = .Code + ctl
 Next

 'Calculate offset to source code line conversion
 ReDim .Code_O2L(-1 To Len(.Code) - 1)
 For i = Len(.Code) - 1 To 0 Step -1
 For tli = UBound(.TknLine) To 0 Step -1
 If .TknLine(tli).CodeOffset <= i Then
 .Code_O2L(i) = .TknLine(tli).CodeLine
 GoTo takeNext
 End If
 Next
 .Code_O2L(i) = 0
takeNext:
 Next
 'Calculate source code line to offset conversion
 ReDim .Code_L2O(-1 To UBound(.AsmLine))
 For i = UBound(.AsmLine) To 0 Step -1
 For tli = 0 To UBound(.TknLine)
 'For tli = UBound(.TknLine) To 0 Step -1
 If .TknLine(tli).CodeLine = i Then
 .Code_L2O(i) = .TknLine(tli).CodeOffset
 GoTo takeNext2
 End If
 Next
 If i = UBound(.AsmLine) Then .Code_L2O(i) = Len(.Code) Else
.Code_L2O(i) = .Code_L2O(i + 1)
takeNext2:
 Next
 ReDim Preserve .Code_L2O(-1 To UBound(.Code_L2O) + 1)
 .Code_L2O(UBound(.Code_L2O)) = Len(.Code) + 1 'point to last
Halt

 End With
End Sub

'--'
' Private Sub CompilePass3() '
' '
' DESCRIPTION: Compilation pass 3: address backpatching '
' 1. Check for "label already declared" '
' 2. Check for "undeclared reference" '
' 3. Backpatch all requseted places '
' '
' PARAMETERS: '
' p - should contain tokenized program (Tkn*) '
' '
' OUTPUT: p.Code containing compiled machine code. '

CLab – Implementation Listings

 84

'--'
Private Sub CompilePass3()
 Dim i As Integer, A As Integer, t As Integer

 With Proj.P

 'Check for "label already declared"
 For i = 0 To UBound(.Ref)
 For A = i + 1 To UBound(.Ref)
 If UCase(.Ref(i).Name) = UCase(.Ref(A).Name) Then
 Call AddErr("Label already declared: '" + .Ref(A).Name +
"'. Previous declaration on line " + CStr(.Ref(i).CodeLine) + ".",
.Ref(A).CodeLine, "EC3001")
 End If
 Next
 Next

 'Check for "undeclared reference"
 For i = 0 To UBound(.Backpatch)
 For A = 0 To UBound(.Ref)
 If UCase(.Backpatch(i).Name) = UCase(.Ref(A).Name) Then GoTo
fnd
 Next
 Call AddErr("Undeclared reference: '" + .Backpatch(i).Name +
"'.", .Backpatch(i).CodeLine, "EC3002")
fnd:
 Next

 'Backpatch
 For i = 0 To UBound(.Backpatch)
 For A = 0 To UBound(.Ref)
 If .Backpatch(i).Name = .Ref(A).Name Then
 If .Backpatch(i).IsDW Then
 Mid(.Code, .Backpatch(i).Addr + 1, 2) =
Dec2Chr(.Ref(A).Addr, 2)
 Else
 t = .Ref(A).Addr - .Backpatch(i).RelTo
 If t < 0 Then t = 256 + t
 Mid(.Code, .Backpatch(i).Addr + 1, 1) = Chr(t)
 End If
 End If
 Next
 Next

 'Match variable references against reference names
 For i = 0 To UBound(.Vars)
 .Vars(i).Name = "[unnamed]"
 Next
 For i = 0 To UBound(.Ref)
 For A = 0 To UBound(.Vars)
 If .Ref(i).Addr = .Vars(A).Addr Then .Vars(A).Name =
.Ref(i).Name
 Next
 Next

 'Add HALT at the end
 .Code = .Code + Chr(&H75)

 End With
End Sub

'--'
' Private Function CompileMemoryAddressing(c As String, '
' adr As Long, cl As Integer) As String '
' '
' DESCRIPTION: compiles addressing from assembly language '
' into machine code. '
' '
' PARAMETERS: '
' c - contains addressing operand in assembly language '
' adr - machine code offset for where the addressing will '
' start (required for backpatching) '
' cl - code line containing the addressing for error log. '
' p - program structure with error log etc '
' '
' RETURNS: machine codes ready to be added to p.Code '
'--'
Private Function CompileMemoryAddressing(c As String, adr As Long,
cl As Integer) As String
 Dim ctl As String, ma As String, l1 As Long, l2 As Long
 ma = c
 ctl = ""

 'Detect type
 If Left(ma, 2) = "[[" And Right(ma, 2) = "]]" Then
 '---------------------------------'
 '--- Memory Indirect Immediate ---'
 '---------------------------------'

 ctl = Chr(1) + Dec2Chr(CIm16(Mid(ma, 3, Len(ma) - 4), adr + 1,
cl), 2)
 Else
 ma = Mid(ma, 2, Len(ma) - 2)
 If OperandIsIm16(ma) Then
 '-------------------------------'
 '--- Memory Direct Immediate ---'
 '-------------------------------'
 ctl = Chr(0) + Dec2Chr(CIm16(ma, adr + 1, cl), 2)
 ElseIf OperandIsRgn(ma) Then
 '--------------------------------'
 '--- Memory Indirect Register ---'
 '--------------------------------'
 ctl = Chr(64 + (Asc(UCase(ma)) - 66))
 Else
 '----------------------'
 '--- Memory Indexed ---'
 '----------------------'
 l1 = 128
 If UCase(Left(ma, 2)) = "B+" Then
 l1 = l1 + 64
 ma = Mid(ma, 3)
 End If
 If InStr(ma, "+") > 0 Then
 ctl = Dec2Chr(CIm16(Mid(ma, InStr(ma, "+") + 1), adr + 1,
cl), 2)
 ma = Left(ma, InStr(ma, "+") - 1)
 l1 = l1 + 32
 End If
 If InStr(ma, "*") > 0 Then
 If Not StringIsLong(Mid(ma, InStr(ma, "*") + 1)) Then
 Call AddErr("Memory addressing scaling factor should be
0, 1, 2 or 4.", cl, "EC2011")
 ctl = ""
 Return
 End If
 l2 = CLng(Mid(ma, InStr(ma, "*") + 1))
 If l2 <> 0 And l2 <> 1 And l2 <> 2 And l2 <> 4 Then
 Call AddErr("Memory addressing scaling factor should be
0, 1, 2 or 4.", cl, "EC2011")
 ctl = ""
 Return
 End If
 If l2 = 4 Then l2 = 3 '00=0,01=1,10=2,11=4
 l1 = l1 + l2 * 4
 ma = Left(ma, InStr(ma, "*") - 1)
 End If
 'Checks have been completed before, so now ma must contain
 'just the indexation register B, C, D or E
 l1 = l1 + (Asc(UCase(ma)) - 66)
 ctl = Chr(l1) + ctl
 End If
 End If
 'Check
 If ctl = "" Then Call Errr("pCompile.CompilePass3: mem addr
compilation successful but returns nothing. Contact the author.")
 'Return compiled addressing
 CompileMemoryAddressing = ctl
End Function

'--'
' Private Function OperandIsRg(s As String) As Boolean '
' '
' PARAMETERS: '
' c - assembly language operand to be tested '
' '
' RETURNS: True if operand is a register (A,B,C,D,E) '
'--'
Private Function OperandIsRg(s As String) As Boolean
 If UCase(s) = "A" Or UCase(s) = "B" Or UCase(s) = "C" Or
UCase(s) = "D" Or UCase(s) = "E" Then
 OperandIsRg = True
 Else
 OperandIsRg = False
 End If
End Function

'---'
' Private Function OperandIsRgn(s As String) As Boolean '
' '
' PARAMETERS: '
' c - assembly language operand to be tested '
' '
' RETURNS: True if operand is a GP register (B,C,D,E) '
'---'
Private Function OperandIsRgn(s As String) As Boolean
 If UCase(s) = "B" Or UCase(s) = "C" Or UCase(s) = "D" Or
UCase(s) = "E" Then

CLab – Implementation Listings

 85

 OperandIsRgn = True
 Else
 OperandIsRgn = False
 End If
End Function

'--'
' Private Function OperandIsMem(c As String) As Boolean '
' '
' PARAMETERS: '
' c - assembly language operand to be tested '
' '
' RETURNS: True if operand is a memory operand. '
'--'
Private Function OperandIsMem(c As String) As Boolean
 Dim s As String, st As String
 s = UCase(c)
 'Checks
 If Len(s) < 3 Then
 OperandIsMem = False
 Exit Function
 End If
 If Left(s, 1) <> "[" Or Right(s, 1) <> "]" Then
 OperandIsMem = False
 Exit Function
 End If
 s = Mid(s, 2, Len(s) - 2)

 'Indirect immediate
 If Left(s, 1) = "[" And Right(s, 1) = "]" Then
 OperandIsMem = OperandIsIm16(Mid(s, 2, Len(s) - 2))
 Exit Function

 'Indirect register
 ElseIf OperandIsRgn(s) Then
 OperandIsMem = True
 Exit Function

 'Direct (immediate)
 ElseIf OperandIsIm16(s) Then
 OperandIsMem = True
 Exit Function

 'Either memory indexed or not memory
 Else
 'Base register
 If Left(s, 2) = "B+" Then s = Mid(s, 3)
 'Offset
 If InStr(s, "+") > 0 Then
 If OperandIsIm16(Mid(s, InStr(s, "+") + 1)) Then
 s = Left(s, InStr(s, "+") - 1)
 Else
 OperandIsMem = False
 Exit Function
 End If
 End If
 'Scale
 If InStr(s, "*") > 0 Then
 st = Mid(s, InStr(s, "*") + 1)
 If TestCharset(st, "0123456789") Then 'no range check here -
 s = Left(s, InStr(s, "*") - 1) 'so can generate error
 Else 'msg with explanation
 OperandIsMem = False 'later
 Exit Function
 End If
 End If
 'Register
 'What is left by now should be the central register which is
compulsory
 OperandIsMem = OperandIsRgn(s)
 End If
End Function

'---'
' Private Function OperandIsIm8(c As String) As Boolean '
' '
' PARAMETERS: '
' c - assembly language operand to be tested '
' '
' RETURNS: True if operand is an 8-bit immediate '
' constant, and range checks are passed. '
'---'
Private Function OperandIsIm8(c As String) As Boolean
 On Error GoTo IsNot

 'Check type depending on first symbol
 If TestCharset(Left(c, 1), "-0123456789") Then
 '--------------'

 '--- NUMBER ---'
 '--------------'

 Dim s As String, testval As Long, minus As Boolean
 If Len(c) = 0 Then GoTo IsNot
 s = UCase(c)
 minus = False
 If Left(s, 1) = "-" Then
 If Len(s) = 1 Then GoTo IsNot
 s = Mid(s, 2)
 minus = True
 End If
 If Right(s, 1) = "H" Or Right(s, 1) = "B" Then If Len(s) = 1
Then GoTo IsNot
 'Check charset and try to convert (overflow will be trapped)
 If Right(s, 1) = "H" Then
 s = Left(s, Len(s) - 1)
 If Not TestCharset(Left(s, 1), "0123456789") Then GoTo IsNot
 If Not TestCharset(s, "0123456789ABCDEF") Then GoTo IsNot
 testval = Hex2Dec(s)
 ElseIf Right(s, 1) = "B" Then
 s = Left(s, Len(s) - 1)
 If Not TestCharset(s, "01") Then GoTo IsNot
 testval = Bin2Dec(s)
 Else
 If Not TestCharset(s, "0123456789") Then GoTo IsNot
 testval = CLng(s)
 End If
 'Check range
 If minus Then testval = -testval
 If testval < -128 Or testval > 255 Then GoTo IsNot
 'Everything is fine
 OperandIsIm8 = True

 ElseIf UCase(c) = "A" Or UCase(c) = "B" Or UCase(c) = "C" Or
UCase(c) = "D" Or UCase(c) = "E" Then
 OperandIsIm8 = False
 Else
 '----------------'
 '--- VARIABLE ---'
 '----------------'

 OperandIsIm8 = TestCharset(c, CharsetLabel)
 End If

 Exit Function
IsNot:
 OperandIsIm8 = False
End Function

'--'
' Private Function OperandIsIm16(c As String) As Boolean '
' '
' PARAMETERS: '
' c - assembly language operand to be tested '
' '
' RETURNS: True if operand is a 16-bit immediate '
' constant, and range checks are passed. '
'--'
Private Function OperandIsIm16(c As String) As Boolean
 On Error GoTo IsNot

 'Check type depending on first symbol
 If TestCharset(Left(c, 1), "-0123456789") Then
 '--------------'
 '--- NUMBER ---'
 '--------------'

 Dim s As String, testval As Long, minus As Boolean
 If Len(c) = 0 Then GoTo IsNot
 s = UCase(c)
 minus = False
 If Left(s, 1) = "-" Then
 If Len(s) = 1 Then GoTo IsNot
 s = Mid(s, 2)
 minus = True
 End If
 If Right(s, 1) = "H" Or Right(s, 1) = "B" Then If Len(s) = 1
Then GoTo IsNot
 'Check charset and try to convert (overflow will be trapped)
 If Right(s, 1) = "H" Then
 s = Left(s, Len(s) - 1)
 If Not TestCharset(Left(s, 1), "0123456789") Then GoTo IsNot
 If Not TestCharset(s, "0123456789ABCDEF") Then GoTo IsNot
 testval = Hex2Dec(s)
 ElseIf Right(s, 1) = "B" Then
 s = Left(s, Len(s) - 1)
 If Not TestCharset(s, "01") Then GoTo IsNot

CLab – Implementation Listings

 86

 testval = Bin2Dec(s)
 Else
 If Not TestCharset(s, "0123456789") Then GoTo IsNot
 testval = CLng(s)
 End If
 'Check range
 If minus Then testval = -testval
 If testval < -32768 Or testval > 65535 Then GoTo IsNot
 'Everything is fine
 OperandIsIm16 = True

 ElseIf UCase(c) = "A" Or UCase(c) = "B" Or UCase(c) = "C" Or
UCase(c) = "D" Or UCase(c) = "E" Then
 OperandIsIm16 = False
 Else
 '----------------'
 '--- VARIABLE ---'
 '----------------'

 OperandIsIm16 = TestCharset(c, CharsetLabel)
 End If

 Exit Function
IsNot:
 OperandIsIm16 = False
End Function

'---'
' Private Function CIm8(c As String, adr As Long, RelTo '
' As Long, cl As Integer, ByRef p As TPrg) As Long '
' '
' PARAMETERS: '
' c - operand to be compiled '
' adr - offset of the operand in code (for backpatch) '
' RelTo - offset of the byte that this is relative to. '
' cl - code line containing the operand (for errlog) '
' p - program containing ErrLog etc '
' '
' RETURNS: unsigned value of constant represented by c. '
' '
' NOTES: will backpatch the code if operand is '
' represented by a variable name. '
'---'
Private Function CIm8(c As String, adr As Long, RelTo As Long, cl
As Integer) As Long

 'Set an error trap and hope we checked C before calling this
 On Error GoTo HoustonWeVeGotAProblem

 'Check type depending on first symbol
 If TestCharset(Left(c, 1), "-0123456789") Then
 '--------------'
 '--- NUMBER ---'
 '--------------'

 'Prepare
 Dim s As String, minus As Boolean, n As Long
 s = UCase(c)
 minus = False
 If Left(s, 1) = "-" Then
 minus = True
 s = Mid(s, 2)
 End If
 'Convert
 If Right(s, 1) = "H" Then
 n = Hex2Dec(Left(s, Len(s) - 1))
 ElseIf Right(s, 1) = "B" Then
 n = Bin2Dec(Left(s, Len(s) - 1))
 Else
 n = CLng(s)
 End If
 'Deal with minus sign
 If minus Then n = 256 - n
 'Return result
 CIm8 = n

 ElseIf adr >= 0 Then
 '----------------'
 '--- VARIABLE ---'
 '----------------'

 'Return 0
 CIm8 = 0
 'Add backpatching instructions
 ReDim Preserve Proj.P.Backpatch(-1 To UBound(Proj.P.Backpatch)
+ 1)
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).IsDW = False
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).Name = c

 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).Addr = adr
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).CodeLine = cl
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).RelTo = RelTo
 Else
 CIm8 = 0
 End If

 Exit Function
HoustonWeVeGotAProblem:
 CIm8 = -1 'should not happen unless OperandIsIm8 not called
before
 Call Errr("pCompile.CIm8: could not convert given text to 8 bit
immediate. Contact the author.")
End Function

'---'
' Private Function CIm16(c As String, adr As Long, cl '
' As Integer, ByRef p As TPrg) As Long '
' '
' PARAMETERS: '
' c - operand to be compiled '
' adr - offset of the operand in code (for backpatch) '
' cl - code line containing the operand (for errlog) '
' p - program containing ErrLog etc '
' '
' RETURNS: unsigned value of constant represented by c. '
' '
' NOTES: will backpatch the code if operand is '
' represented by a variable name. '
'---'
Private Function CIm16(c As String, adr As Long, cl As Integer) As
Long

 'Set an error trap and hope we checked C before calling this
 On Error GoTo HoustonWeVeGotAProblem

 'Check type depending on first symbol
 If TestCharset(Left(c, 1), "-0123456789") Then
 '--------------'
 '--- NUMBER ---'
 '--------------'

 'Prepare
 Dim s As String, minus As Boolean, n As Long
 s = UCase(c)
 minus = False
 If Left(s, 1) = "-" Then
 minus = True
 s = Mid(s, 2)
 End If
 'Convert
 If Right(s, 1) = "H" Then
 n = Hex2Dec(Left(s, Len(s) - 1))
 ElseIf Right(s, 1) = "B" Then
 n = Bin2Dec(Left(s, Len(s) - 1))
 Else
 n = CLng(s)
 End If
 'Deal with minus sign
 If minus Then n = 65536 - n
 'Return result
 CIm16 = n

 ElseIf adr >= 0 Then
 '----------------'
 '--- VARIABLE ---'
 '----------------'

 'Return 0
 CIm16 = 0
 'Add backpatching instructions
 ReDim Preserve Proj.P.Backpatch(-1 To UBound(Proj.P.Backpatch)
+ 1)
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).IsDW = True
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).Name = c
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).Addr = adr
 Proj.P.Backpatch(UBound(Proj.P.Backpatch)).CodeLine = cl
 Else
 CIm16 = 0
 End If

 Exit Function
HoustonWeVeGotAProblem:
 CIm16 = -1 'should not happen unless OperandIsIm16 not called
before
 Call Errr("pCompile.CIm16: could not convert given text to 16
bit immediate. Contact the author.")
End Function

CLab – Implementation Listings

 87

'--'
' Private Sub AddErr(ByRef ErrL As PErrLog, Message As '
' String, LineNum As Integer, ErrCode As String) '
' '
' DESCRIPTION: Appends an error to the given error log '
' '
' PARAMETERS: '
' ErrL - error log to add to '
' Message - error message to be displayed '
' LineNum - offending line number in source code '
' ErrCode - error code to manage help '
'--'
Private Sub AddErr(Message As String, LineNum As Integer, ErrCode
As String)
 Dim i As Integer
 'Add element
 ReDim Preserve Proj.P.ErrL.lError(-1 To
UBound(Proj.P.ErrL.lError) + 1)
 ReDim Preserve Proj.P.ErrL.sError(-1 To
UBound(Proj.P.ErrL.sError) + 1)
 ReDim Preserve Proj.P.ErrL.nError(-1 To
UBound(Proj.P.ErrL.nError) + 1)
 'Set new element
 Proj.P.ErrL.lError(UBound(Proj.P.ErrL.lError)) = LineNum
 Proj.P.ErrL.sError(UBound(Proj.P.ErrL.sError)) = Message
 Proj.P.ErrL.nError(UBound(Proj.P.ErrL.nError)) = ErrCode
End Sub

'--'
' Private Sub AddWng(ByRef ErrL As PErrLog, Message As '
' String, LineNum As Integer, WngCode As String) '
' '
' DESCRIPTION: Appends a warning to given error log '
' '
' PARAMETERS: '
' ErrL - error log to add to '
' Message - warning message to be displayed '
' LineNum - offending line number in source code '
' WngCode - warning code to manage help '
'--'
Private Sub AddWng(Message As String, LineNum As Integer, WngCode
As String)
 Dim i As Integer
 'Add element
 ReDim Preserve Proj.P.ErrL.lWarning(-1 To
UBound(Proj.P.ErrL.lWarning) + 1)
 ReDim Preserve Proj.P.ErrL.sWarning(-1 To
UBound(Proj.P.ErrL.sWarning) + 1)
 ReDim Preserve Proj.P.ErrL.nWarning(-1 To
UBound(Proj.P.ErrL.nWarning) + 1)
 'Set new element
 Proj.P.ErrL.lWarning(UBound(Proj.P.ErrL.lWarning)) = LineNum
 Proj.P.ErrL.sWarning(UBound(Proj.P.ErrL.sWarning)) = Message
 Proj.P.ErrL.nWarning(UBound(Proj.P.ErrL.nWarning)) = WngCode
End Sub

'--'
' Private Function CleanSpaces(ByVal src As String) '
' '
' DESCRIPTION: Converts all tab/" "/"," sequences with '
' a single space character. '
' '
' PARAMETERS: '
' src - string to process '
' '
' RETURNS: processed string with converted characters '
'--'
Private Function CleanSpaces(ByVal src As String)
 Dim i As Integer, b As Boolean
 Dim s As String, c As String

 b = True
 s = ""
 For i = 1 To Len(src)
 c = Mid(src, i, 1)
 If Asc(c) > 127 Then GoTo skp
 If b Then
 If c = Chr(9) Or c = " " Or c = "," Then
 s = s + " "
 b = False
 Else
 s = s + c
 End If
 Else
 If c <> Chr(9) And c <> " " And c <> "," Then
 s = s + c
 b = True
 End If
 End If
skp:
 Next

 CleanSpaces = s
End Function

'Warnings:
'WC1001, WC1002

'Errors:
'EC1001, EC1002, EC1003, EC1004

'EC2001 - operand takes X operands, not Y.
'EC2002
'EC2005 - Syntax error in operand OR opcode and operand
incompatible. Offending operand: 'Y'.
'EC2006
'EC2007 - 16 bit immediate constant is out of range.
'EC2008, EC2009, EC2010, EC2011, EC2013, EC2014,
'EC2015, EC2016, EC2017, EC2018, EC2019

'EC3001, EC3002

22.5. pExec

Option Explicit

'--'
' Public declarations in this module: '
' '
' VARIABLES: '
' CPU - current CPU state '
' '
' CONSTANTS: '
' flX - flag constants for CPU.FLAGS '
' '
' PROCEDURES: '
' exeInit - initialises this module '
' Tick - advance simulation by 1 tick '
' DI2Str - CStr(microinstruction) '
'--'

'Decoded microinstruction
Private Type TpDI
 Sig1 As Long 'VB has no built-in support for
 Sig2 As Long ' 64-bit integers, so have to split them
 nToIDB As Long
 nAluOpNum As Integer

 nJmpCond As Integer
 nAdrMul As Integer
 nAluSh As Integer
 nIntIS As Integer
End Type

'CPU state structure
Public Type TpCPU
 '-----------------'
 '--- Registers ---'
 '-----------------'

 'General purpose
 A As Long
 R(0 To 3) As Long
 'Special purpose
 IP As Long
 SP As Long
 FLAGS As Long
 'Internal
 MAR As Long
 MDR As Long
 CIB As String

CLab – Implementation Listings

 88

 DIB() As TpDI 'decoded buffer
 Fetch As Boolean
 FREM As Integer
 fremMem As Boolean 'invisible register to allow for FREM+
 IS As Long

 '-----------------'
 '--- Execution ---'
 '-----------------'
 eSelectedReg As Integer '0..X: b,c,d,e,sp,ip
 eIDB As Long
 eIAB As Long
 eDP As Integer 'which microinstruction doing
 eEDB As Long
 eEAB As Long
 Breakpoint() As Long 'address at which we are when first exec tick
End Type

'Signal numbers
Private Const reg_sb = 0
Private Const reg_sc = 1
Private Const reg_sd = 2
Private Const reg_se = 3
Private Const reg_ssp = 4
Private Const reg_sip = 5
Private Const reg_r = 6
Private Const reg_w = 7
Private Const reg_ipi = 8
Private Const reg_spi = 9
Private Const reg_spd = 10
Private Const adr_br = 11
Private Const adr_sr = 12
Private Const adr_im = 13
Private Const adr_c = 14
Private Const lea_ad = 15
Private Const acc_r = 16
Private Const acc_w = 17
Private Const flg_r = 18
Private Const flg_w = 19
Private Const ctl_mr = 20
Private Const ctl_mw = 21
Private Const ctl_pr = 22
Private Const ctl_pw = 23
Private Const mdr_ri = 24
Private Const mdr_re = 25
Private Const mdr_wi = 26
Private Const mdr_we = 27
Private Const mar_ri = 28
Private Const mar_re = 29
Private Const mar_wi = 30 'skip 31 because there may be errors
Private Const mar_we = 32 ' associated with sign
Private Const alu_swp = 33
Private Const ctl_halt = 34
Private Const lea_da = 35
Private Const flg_stz = 36
Private Const flg_clz = 37
Private Const flg_stc = 38
Private Const flg_clc = 39
Private Const flg_sto = 40
Private Const flg_clo = 41
Private Const flg_sts = 42
Private Const flg_cls = 43
Private Const flg_sti = 44
Private Const flg_cli = 45

Private Const op_alu_sh = 58 'these indicate that the
Private Const op_jmp_cond = 59 'next operand in a call to
Private Const op_idb_im = 60 'SFlg is a respective parameter
Private Const op_adr_mm = 61
Private Const op_alu_c = 62

'Flag constants
Public Const flZ = 1
Public Const flS = 2
Public Const flO = 4
Public Const flC = 8
Public Const flI = 16
Public Const flN = 256
Public Const flP = 512

'Fetch simplification arrays
Public InstructionLen(0 To 255) As Integer 'public because other
Public InstructionMem(0 To 255) As Boolean 'units may need the
lengths
' "Massive decode" simplification
Private AluOpType1Hex(0 To 7) As Integer
Private AluOpType2Hex(0 To 13) As Integer
Private AluOpType3Hex1(0 To 4) As Integer

Private AluOpType3Hex2(0 To 4) As Integer
Private JmpOpType4Hex(0 To 11) As Integer

'--------------------------'
' Public Sub exeInit() '
' '
' Initializes this module '
'--------------------------'
Public Sub exeInit()
 Dim i As Integer
 'Reset arrays
 For i = 0 To 255
 InstructionLen(i) = 1 'let it fetch and try to decode
 InstructionMem(i) = False
 Next
 'Instruction lengths
 'Cannot do it in a loop - there are holes everywhere
 InstructionLen(&H0) = 1
 InstructionLen(&H1) = 1
 InstructionLen(&H2) = 1
 InstructionLen(&H3) = 1
 InstructionLen(&H4) = 1
 InstructionLen(&H5) = 1
 InstructionLen(&H6) = 1
 InstructionLen(&H7) = 1
 InstructionLen(&HF) = 1
 InstructionLen(&H10) = 1
 InstructionLen(&H11) = 1
 InstructionLen(&H13) = 1
 InstructionLen(&H14) = 1
 InstructionLen(&H15) = 1
 InstructionLen(&H16) = 1
 InstructionLen(&H17) = 1
 InstructionLen(&H54) = 1
 InstructionLen(&H55) = 1
 InstructionLen(&H56) = 1
 InstructionLen(&H57) = 1
 InstructionLen(&H64) = 1
 InstructionLen(&H65) = 1
 InstructionLen(&H66) = 1
 InstructionLen(&H67) = 1
 InstructionLen(&H72) = 1
 InstructionLen(&H73) = 1
 InstructionLen(&H75) = 1
 InstructionLen(&H76) = 1
 InstructionLen(&H77) = 1
 InstructionLen(&H8F) = 1
 InstructionLen(&H9F) = 1
 InstructionLen(&HA0) = 1
 InstructionLen(&HA1) = 1
 InstructionLen(&HA2) = 1
 InstructionLen(&HA3) = 1
 InstructionLen(&HA4) = 1
 InstructionLen(&HA5) = 1
 InstructionLen(&HA6) = 1
 InstructionLen(&HA7) = 1
 InstructionLen(&HA8) = 1
 InstructionLen(&HA9) = 1
 InstructionLen(&HAA) = 1
 InstructionLen(&HAB) = 1
 InstructionLen(&HAC) = 1
 InstructionLen(&HAD) = 1
 InstructionLen(&HAE) = 1
 InstructionLen(&HAF) = 1
 InstructionLen(&HBC) = 1
 InstructionLen(&HBD) = 1
 InstructionLen(&HBE) = 1
 InstructionLen(&HBF) = 1
 InstructionLen(&HDC) = 1
 InstructionLen(&HDD) = 1
 InstructionLen(&HDE) = 1
 InstructionLen(&HDF) = 1
 InstructionLen(&HE6) = 1
 InstructionLen(&HE7) = 1
 InstructionLen(&HF0) = 1
 InstructionLen(&HF1) = 1
 InstructionLen(&HF2) = 1
 InstructionLen(&HF3) = 1
 InstructionLen(&HF4) = 1
 InstructionLen(&HF5) = 1
 InstructionLen(&HF6) = 1
 InstructionLen(&HF7) = 1

 InstructionLen(&H25) = 2
 InstructionLen(&H35) = 2
 InstructionLen(&H74) = 2
 InstructionLen(&H80) = 2
 InstructionLen(&H83) = 2

CLab – Implementation Listings

 89

 InstructionLen(&H86) = 2
 InstructionLen(&H89) = 2
 InstructionLen(&H8C) = 2
 InstructionLen(&H90) = 2
 InstructionLen(&H93) = 2
 InstructionLen(&H96) = 2
 InstructionLen(&H99) = 2
 InstructionLen(&H9C) = 2
 InstructionLen(&HB0) = 2
 InstructionLen(&HB3) = 2
 InstructionLen(&HB6) = 2
 InstructionLen(&HB9) = 2
 InstructionLen(&HC0) = 2
 InstructionLen(&HC1) = 2
 InstructionLen(&HC2) = 2
 InstructionLen(&HC3) = 2
 InstructionLen(&HC4) = 2
 InstructionLen(&HC5) = 2
 InstructionLen(&HC6) = 2
 InstructionLen(&HC7) = 2
 InstructionLen(&HD0) = 2
 InstructionLen(&HD1) = 2
 InstructionLen(&HD2) = 2
 InstructionLen(&HD3) = 2
 InstructionLen(&HD4) = 2
 InstructionLen(&HD6) = 2
 InstructionLen(&HD8) = 2
 InstructionLen(&HD9) = 2
 InstructionLen(&HDA) = 2
 InstructionLen(&HDB) = 2
 InstructionLen(&HE4) = 2
 InstructionLen(&HE5) = 2

 InstructionLen(&H12) = 3
 InstructionLen(&H20) = 3
 InstructionLen(&H21) = 3
 InstructionLen(&H22) = 3
 InstructionLen(&H23) = 3
 InstructionLen(&H24) = 3
 InstructionLen(&H30) = 3
 InstructionLen(&H31) = 3
 InstructionLen(&H32) = 3
 InstructionLen(&H33) = 3
 InstructionLen(&H34) = 3
 InstructionLen(&H81) = 3
 InstructionLen(&H84) = 3
 InstructionLen(&H87) = 3
 InstructionLen(&H8A) = 3
 InstructionLen(&H8D) = 3
 InstructionLen(&H91) = 3
 InstructionLen(&H94) = 3
 InstructionLen(&H97) = 3
 InstructionLen(&H9A) = 3
 InstructionLen(&H9D) = 3
 InstructionLen(&HB1) = 3
 InstructionLen(&HB4) = 3
 InstructionLen(&HB7) = 3
 InstructionLen(&HBA) = 3
 InstructionLen(&HD5) = 3
 InstructionLen(&HE0) = 3
 InstructionLen(&HE1) = 3
 InstructionLen(&HE2) = 3
 InstructionLen(&HE3) = 3

 InstructionLen(&HD7) = 4

 InstructionLen(&H8) = -1 'minus saves code lines - see below
 InstructionLen(&H9) = -1
 InstructionLen(&HA) = -1
 InstructionLen(&HB) = -1
 InstructionLen(&HC) = -1
 InstructionLen(&H40) = -1
 InstructionLen(&H41) = -1
 InstructionLen(&H42) = -1
 InstructionLen(&H43) = -1
 InstructionLen(&H50) = -1
 InstructionLen(&H51) = -1
 InstructionLen(&H52) = -1
 InstructionLen(&H53) = -1
 InstructionLen(&H60) = -1
 InstructionLen(&H61) = -1
 InstructionLen(&H62) = -1
 InstructionLen(&H63) = -1
 InstructionLen(&H70) = -1
 InstructionLen(&H71) = -1
 InstructionLen(&H82) = -1
 InstructionLen(&H85) = -1
 InstructionLen(&H88) = -1

 InstructionLen(&H8B) = -1
 InstructionLen(&H8E) = -1
 InstructionLen(&H92) = -1
 InstructionLen(&H95) = -1
 InstructionLen(&H98) = -1
 InstructionLen(&H9B) = -1
 InstructionLen(&H9E) = -1
 InstructionLen(&HB2) = -1
 InstructionLen(&HB5) = -1
 InstructionLen(&HB8) = -1
 InstructionLen(&HBB) = -1

 InstructionLen(&H26) = -2
 InstructionLen(&H27) = -2
 InstructionLen(&H36) = -2
 InstructionLen(&H37) = -2

 For i = 0 To 255
 If InstructionLen(i) = -2 Or InstructionLen(i) = -1 Then
 InstructionMem(i) = True
 InstructionLen(i) = -InstructionLen(i)
 End If
 Next

 'Initialise array AluOpType1Hex
 AluOpType1Hex(0) = &HC0
 AluOpType1Hex(1) = &HC1
 AluOpType1Hex(2) = &HC2
 AluOpType1Hex(3) = &HC3
 AluOpType1Hex(4) = &HC4
 AluOpType1Hex(5) = &HC5
 AluOpType1Hex(6) = &HC6
 AluOpType1Hex(7) = &HC7
 'Initialise array AluOpType2Hex
 AluOpType2Hex(0) = &H80
 AluOpType2Hex(1) = &H83
 AluOpType2Hex(2) = &H86
 AluOpType2Hex(3) = &H89
 AluOpType2Hex(4) = &H8C
 AluOpType2Hex(5) = &H90
 AluOpType2Hex(6) = &H93
 AluOpType2Hex(7) = &H96
 AluOpType2Hex(8) = &H99
 AluOpType2Hex(9) = &H9C
 AluOpType2Hex(10) = &HB0
 AluOpType2Hex(11) = &HB3
 AluOpType2Hex(12) = &HB6
 AluOpType2Hex(13) = &HB9
 'Initialise array AluOpType3Hex
 AluOpType3Hex1(0) = &HA0
 AluOpType3Hex1(1) = &HA4
 AluOpType3Hex1(2) = &HA8
 AluOpType3Hex1(3) = &HBC
 AluOpType3Hex1(4) = &HDC
 AluOpType3Hex2(0) = &HAC
 AluOpType3Hex2(1) = &HAD
 AluOpType3Hex2(2) = &HAE
 AluOpType3Hex2(3) = &HAF
 AluOpType3Hex2(4) = &H9F
 'Initialise array JmpOpType4Hex
 JmpOpType4Hex(0) = &H40
 JmpOpType4Hex(1) = &H41
 JmpOpType4Hex(2) = &H42
 JmpOpType4Hex(3) = &H43
 JmpOpType4Hex(4) = &H50
 JmpOpType4Hex(5) = &H51
 JmpOpType4Hex(6) = &H52
 JmpOpType4Hex(7) = &H53
 JmpOpType4Hex(8) = &H60
 JmpOpType4Hex(9) = &H61
 JmpOpType4Hex(10) = &H62
 JmpOpType4Hex(11) = &H63
End Sub

'--'
' Private Function GFlg(di As TpDI, Index As '
' Integer) As Boolean '
' '
' Returns true if flag Index is set in di '
'--'
Private Function GFlg(di As TpDI, Index As Integer) As Boolean
 If Index < 31 Then
 GFlg = ((di.Sig1 And 2 ^ Index) > 0)
 ElseIf (Index >= 32) And (Index <= 62) Then
 GFlg = ((di.Sig2 And 2 ^ (Index - 32)) > 0)
 Else
 Call Errr("pExec.GFlg: index should be between 0 and 62
excluding 31.")

CLab – Implementation Listings

 90

 End If
End Function

'--'
' Private Sub SFlg(di As TpDI, ParamArray arr()) '
' '
' DESCRIPTION: adds the specified signals to the '
' decoded instruction buffer element. '
' '
' PARAMETERS: '
' di - decoded microinstruction to be modigied '
' arr() - list of signal constants '
' '
' NOTES: using a signal constant beginning with '
' op_ will make SFlg assume that the next '
' arr() element is the signal-specific param '
' to be stored in di. '
'--'
Private Sub SFlg(di As TpDI, ParamArray arr())
 Dim i As Integer
 di.nAdrMul = 1
 di.nAluOpNum = -1
 di.nJmpCond = -1
 di.nToIDB = -1
 di.nAluSh = 0
 di.Sig1 = 0
 di.Sig2 = 0
 For i = 0 To UBound(arr)
 'Add signal
 If (arr(i) >= 0) And (arr(i) <= 30) Then
 di.Sig1 = di.Sig1 Or (2 ^ arr(i))
 ElseIf (arr(i) >= 32) And (arr(i) <= 62) Then
 di.Sig2 = di.Sig2 Or (2 ^ (arr(i) - 32))
 End If
 'Check if signal parameter present
 If arr(i) = op_adr_mm Then
 di.nAdrMul = arr(i + 1)
 i = i + 1
 ElseIf arr(i) = op_alu_c Then
 di.nAluOpNum = arr(i + 1)
 i = i + 1
 ElseIf arr(i) = op_idb_im Then
 di.nToIDB = arr(i + 1)
 i = i + 1
 ElseIf arr(i) = op_jmp_cond Then
 di.nJmpCond = arr(i + 1)
 i = i + 1
 ElseIf arr(i) = op_alu_sh Then
 di.nAluSh = arr(i + 1)
 i = i + 1
 End If
 Next
End Sub

'---'
' Public Sub Tick() '
' '
' Advances simulation by one clock tick by '
' fetching, decoding or executing something. '
'---'
Public Sub Tick()
 eTick
 'No updates - update manually for more control
End Sub

'---'
' Public Sub Tick() '
' '
' Advances simulation by CPU instruction, '
' fetching the next one. '
'---'
Public Sub Step()
 Dim wasIS As Integer 'finish step at interrupt
 While Not Proj.CPU.Fetch
 wasIS = Proj.CPU.IS
 eTick
 If wasIS <> Proj.CPU.IS Then Exit Sub
 Wend
 While Proj.CPU.Fetch
 wasIS = Proj.CPU.IS
 eTick
 If wasIS <> Proj.CPU.IS Then Exit Sub
 Wend
 'No updates - update manually for more control
End Sub

'--'
' Private Sub eTick() '

' '
' Either fetches or executes current instruction, '
' depending on state. Does not update any forms. '
'--'
Private Sub eTick()
 If Proj.CPU.Fetch Then
 eFetch
 Else
 eExecute
 End If
 devTick
 Proj.TickCount = Proj.TickCount + 1
End Sub

'--'
' Private Sub eFetch() '
' '
' Advances simulation by one tick when CPU is '
' in fetch mode. Does NOT check if it is. After '
' fetching the last byte automatically initiates '
' eDecode, so that decoding takes no further ticks '
'--'
Private Sub eFetch()
 Dim b As Byte
 With Proj.CPU

 'Fetch a byte into a temporary location
 b = Proj.RAM(.IP)
 .IP = .IP + 1

 'First loop of fetch cycle
 If .CIB = "" Then
 'How many bytes to fetch
 .FREM = InstructionLen(b)
 .fremMem = InstructionMem(b)

 'Middle loop & recalc of FREM needed
 ElseIf (.FREM = 0) And .fremMem Then
 If (b And 192) = 0 Then .FREM = 3
 If (b And 192) = 64 Then .FREM = 1
 If (b And 192) = 0 Then .FREM = 3
 If (b And 160) = 160 Then .FREM = 3
 If (b And 160) = 128 Then .FREM = 1
 .fremMem = False
 End If

 'Add fetched byte to CIB
 .CIB = .CIB + Chr(b)
 'Update remaining bytes register
 .FREM = .FREM - 1

 'Last loop of fetch cycle
 Dim i As Integer
 If .FREM = 0 And .fremMem = False Then
 .Fetch = False
 eDecode
 'Check breakpoints
 For i = 0 To UBound(.Breakpoint)
 If .IP = .Breakpoint(i) Then
 Proj.Paused = True
 Call fiMain.UpdateAll(True)
 End If
 Next
 End If

 End With
End Sub

'--'
' Private Sub eDecode '
' '
' DESCRIPTION: Decodes fetched instruction '
' from CPU.CIB, placing decoded microprogram '
' into CPU.DIB. '
'--'
Private Sub eDecode()
 With Proj.CPU

 'Get first byte into b
 If .CIB = "" Then
 Call Errr("pExec.execDecode: CIB is empty. Contact the
author.")
 End If
 Dim b As Byte
 b = Asc(Left(.CIB, 1))

 'Empty DIB
 ReDim .DIB(-1 To -1)

CLab – Implementation Listings

 91

 '---------'
 '- LD/ST -'
 '---------'
 If (b >= &H30) And (b <= &H37) Then b = b - &H10
 If (b >= &H20) And (b <= &H23) Then
 'ld Reg,I
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_w, op_idb_im,
Chr2Dec(Mid(.CIB, 2, 2)))
 Exit Sub
 ElseIf b = &H24 Then
 'ld A,I
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), acc_w, op_idb_im, Chr2Dec(Mid(.CIB, 2, 2)))
 Exit Sub
 ElseIf b = &H25 Then
 'ld R,R
 b = Asc(Mid(.CIB, 2, 1))
 If (b And 192) = 192 Then
 'ld A,A
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), acc_r, acc_w)
 ElseIf (b And 192) = 128 Then
 'ld A,Rn
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_r, acc_w)
 ElseIf (b And 192) = 64 Then
 'ld Rn,A
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), reg_sX((b And 24) / 8), reg_w, acc_r)
 Else
 'ld Rn,Rn
 ReDim .DIB(-1 To 1)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_sX((b And 24) / 8), reg_w, mdr_ri)
 End If
 Exit Sub
 ElseIf b = &H26 Then
 'ld R,M
 ReDim .DIB(-1 To -1)
 Call DecodeMem(3)
 b = Asc(Mid(.CIB, 2, 1))
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 2)
 Call SFlg(.DIB(UBound(.DIB) - 1), mar_re, ctl_mr, mdr_we)
 If (b And 4) = 4 Then
 Call SFlg(.DIB(UBound(.DIB)), mdr_ri, acc_w)
 Else
 Call SFlg(.DIB(UBound(.DIB)), mdr_ri, reg_sX(b And 3), reg_w)
 End If
 Exit Sub
 ElseIf b = &H27 Then
 'ld M,R
 ReDim .DIB(-1 To -1)
 Call DecodeMem(3)
 b = Asc(Mid(.CIB, 2, 1))
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 2)
 If (b And 4) = 4 Then
 Call SFlg(.DIB(UBound(.DIB) - 1), acc_r, mdr_wi)
 Else
 Call SFlg(.DIB(UBound(.DIB) - 1), reg_sX(b And 3), reg_r,
mdr_wi)
 End If
 Call SFlg(.DIB(UBound(.DIB)), mar_re, mdr_re, ctl_mw)
 Exit Sub
 End If

 '----------'
 '- TYPE 1 -'
 '----------'
 Dim i As Integer
 For i = 0 To 7
 If (b = AluOpType1Hex(i)) Then
 b = Asc(Mid(.CIB, 2, 1))
 If (b And 128) = 0 Then
 'op A,Rn
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), reg_sX((b And 96) \ 32), reg_r, op_alu_c,
19 + i, acc_w)
 Else
 ReDim .DIB(-1 To 0)
 If (b And 16) = 0 Then
 'op Rn,N
 Call SFlg(.DIB(0), reg_sX((b And 96) \ 32), reg_r,
op_alu_sh, b And 15, op_alu_c, 27 + i, reg_w)
 Else
 'op A,N

 Call SFlg(.DIB(0), acc_r, op_alu_sh, b And 15, op_alu_c,
27 + i, acc_w)
 End If
 End If
 Exit Sub
 End If
 Next

 '----------'
 '- TYPE 2 -'
 '----------'
 For i = 0 To 13
 If (b = AluOpType2Hex(i)) Then
 b = Asc(Mid(.CIB, 2, 1))
 If (b And 4) = 0 Then
 If (b And 8) = 0 Then
 'op A,Rn
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_r, acc_w,
op_alu_c, i)
 Else
 'op Rn,A
 ReDim .DIB(-1 To 1)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_r, op_alu_c, i,
alu_swp)
 Call SFlg(.DIB(1), reg_sX(b And 3), reg_w)
 End If
 Else
 'op A,A
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), acc_r, acc_w, op_alu_c, i)
 End If
 Exit Sub
 ElseIf (b = AluOpType2Hex(i) + 1) Then
 'op A,I
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), acc_w, op_alu_c, i, op_idb_im,
Chr2Dec(Mid(.CIB, 2, 2)))
 Exit Sub
 ElseIf (b = AluOpType2Hex(i) + 2) Then
 'op A,M
 ReDim .DIB(-1 To -1)
 Call DecodeMem(2)
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 2)
 Call SFlg(.DIB(UBound(.DIB) - 1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(UBound(.DIB)), mdr_ri, acc_w, op_alu_c, i)
 Exit Sub
 End If
 Next

 '----------'
 '- TYPE 3 -'
 '----------'
 For i = 0 To 4
 If (b = AluOpType3Hex2(i)) Then
 'op A
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), acc_r, op_alu_c, 14 + i, acc_w)
 Exit Sub
 ElseIf (b >= AluOpType3Hex1(i)) And (b <= AluOpType3Hex1(i) +
3) Then
 'op Rn
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_r, op_alu_c, 14 + i,
reg_w)
 Exit Sub
 End If
 Next

 '----------'
 '- TYPE 4 -'
 '----------'
 For i = 0 To 11
 'jXX M
 If b = JmpOpType4Hex(i) Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), op_jmp_cond, i)
 Call DecodeMem(2)
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 1)
 Call SFlg(.DIB(UBound(.DIB)), mar_ri, lea_ad, reg_sip,
reg_w)
 Exit Sub
 End If
 Next

 '--- JMP ---'
 If b = &H70 Then
 ReDim .DIB(-1 To -1)

CLab – Implementation Listings

 92

 Call DecodeMem(2)
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 1)
 Call SFlg(.DIB(UBound(.DIB)), mar_ri, lea_ad, reg_sip, reg_w)
 Exit Sub
 End If

 '--- CALL ---'
 If b = &H71 Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), reg_sip, reg_r, mdr_wi, reg_spi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw)
 Call DecodeMem(2)
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 1)
 Call SFlg(.DIB(UBound(.DIB)), mar_ri, lea_ad, reg_sip, reg_w)
 Exit Sub
 End If

 '--- RET ---'
 If b = &H72 Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(2), reg_sip, mdr_ri, reg_w)
 Exit Sub
 End If

 '--- HALT ---'
 If b = &H75 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), ctl_halt)
 Exit Sub
 End If

 '--- PUSH ---'
 If (b >= &H0) And (b <= &H3) Then
 'push Rn
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), reg_sX(b), reg_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 Exit Sub
 ElseIf b = &H10 Then
 'push A
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), acc_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 Exit Sub
 ElseIf b = &H12 Then
 'push I
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), op_idb_im, Chr2Dec(Mid(.CIB, 2, 2)), mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 Exit Sub
 ElseIf b = &H13 Then
 'pushpc
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), reg_sip, reg_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 Exit Sub
 ElseIf b = &H14 Then
 'pushsp
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), reg_ssp, reg_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 Exit Sub
 ElseIf b = &H15 Then
 'pushfl
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), flg_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 Exit Sub
 End If

 '--- POP ---'
 If (b >= &H4) And (b <= &H7) Then
 'pop Rn
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(2), reg_sX(b And 3), mdr_ri, reg_w)
 Exit Sub
 ElseIf b = &H11 Then

 'pop A
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(2), mdr_ri, acc_w)
 Exit Sub
 ElseIf b = &H16 Then
 'popsp
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(2), reg_ssp, mdr_ri, reg_w)
 Exit Sub
 ElseIf b = &H17 Then
 'popfl
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(2), mdr_ri, flg_w)
 Exit Sub
 End If

 '--- SP2B ---'
 If b = &HF Then
 ReDim .DIB(-1 To 1)
 Call SFlg(.DIB(0), reg_ssp, reg_r, mdr_wi)
 Call SFlg(.DIB(1), mdr_ri, reg_sb, reg_w)
 Exit Sub
 End If

 '--- LEA ---'
 If (b >= &H8) And (b <= &HB) Then
 ReDim .DIB(-1 To -1)
 Call DecodeMem(2)
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 1)
 Call SFlg(.DIB(UBound(.DIB)), mar_ri, lea_ad, reg_sX(b And 3),
reg_w)
 Exit Sub
 ElseIf b = &H2F Then
 ReDim .DIB(-1 To -1)
 Call DecodeMem(2)
 ReDim Preserve .DIB(-1 To UBound(.DIB) + 1)
 Call SFlg(.DIB(UBound(.DIB)), mar_ri, lea_ad, acc_w)
 Exit Sub
 End If

 '--- XCHG ---'
 If (b >= &HF0) And (b <= &HF3) Then
 'xchg A,Rn
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), acc_r, mdr_wi)
 Call SFlg(.DIB(1), reg_sX(b And 3), reg_r, acc_w)
 Call SFlg(.DIB(2), mdr_ri, reg_sX(b And 3), reg_w)
 Exit Sub
 ElseIf b = &HE6 Then
 'xchg c,d
 ReDim .DIB(-1 To 3)
 Call SFlg(.DIB(0), reg_sc, reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_sd, reg_r, lea_da, mar_wi)
 Call SFlg(.DIB(2), mdr_ri, reg_sd, reg_w)
 Call SFlg(.DIB(3), mar_ri, lea_ad, reg_sc, reg_w)
 Exit Sub
 ElseIf b = &HE7 Then
 'xchg c,e
 ReDim .DIB(-1 To 3)
 Call SFlg(.DIB(0), reg_sc, reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_se, reg_r, lea_da, mar_wi)
 Call SFlg(.DIB(2), mdr_ri, reg_se, reg_w)
 Call SFlg(.DIB(3), mar_ri, lea_ad, reg_sc, reg_w)
 Exit Sub
 ElseIf b = &HF4 Then
 'xchg d,e
 ReDim .DIB(-1 To 3)
 Call SFlg(.DIB(0), reg_sd, reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_se, reg_r, lea_da, mar_wi)
 Call SFlg(.DIB(2), mdr_ri, reg_se, reg_w)
 Call SFlg(.DIB(3), mar_ri, lea_ad, reg_sd, reg_w)
 Exit Sub
 ElseIf b = &HF5 Then
 'xchg b,c
 ReDim .DIB(-1 To 3)
 Call SFlg(.DIB(0), reg_sb, reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_sc, reg_r, lea_da, mar_wi)
 Call SFlg(.DIB(2), mdr_ri, reg_sc, reg_w)
 Call SFlg(.DIB(3), mar_ri, lea_ad, reg_sb, reg_w)
 Exit Sub
 ElseIf b = &HF6 Then
 'xchg b,d

CLab – Implementation Listings

 93

 ReDim .DIB(-1 To 3)
 Call SFlg(.DIB(0), reg_sb, reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_sd, reg_r, lea_da, mar_wi)
 Call SFlg(.DIB(2), mdr_ri, reg_sd, reg_w)
 Call SFlg(.DIB(3), mar_ri, lea_ad, reg_sb, reg_w)
 Exit Sub
 ElseIf b = &HF7 Then
 'xchg b,e
 ReDim .DIB(-1 To 3)
 Call SFlg(.DIB(0), reg_sb, reg_r, mdr_wi)
 Call SFlg(.DIB(1), reg_se, reg_r, lea_da, mar_wi)
 Call SFlg(.DIB(2), mdr_ri, reg_se, reg_w)
 Call SFlg(.DIB(3), mar_ri, lea_ad, reg_sb, reg_w)
 Exit Sub
 End If

 '--- NOP ---'
 If b = &H8F Then
 ReDim .DIB(-1 To -1)
 Exit Sub
 End If

 '--- FLAGS ---'
 If b = &H54 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_stz)
 Exit Sub
 ElseIf b = &H55 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_clz)
 Exit Sub
 ElseIf b = &H56 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_stc)
 Exit Sub
 ElseIf b = &H57 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_clc)
 Exit Sub
 ElseIf b = &H64 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_sto)
 Exit Sub
 ElseIf b = &H65 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_clo)
 Exit Sub
 ElseIf b = &H66 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_sts)
 Exit Sub
 ElseIf b = &H67 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_cls)
 Exit Sub
 ElseIf b = &H76 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_sti)
 Exit Sub
 ElseIf b = &H77 Then
 ReDim .DIB(-1 To 0)
 Call SFlg(.DIB(0), flg_cli)
 Exit Sub
 End If

 '--- IN ---'
 If b = &HE4 Then
 b = Asc(Mid(.CIB, 2, 1))
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), IIf((b And 16) > 0, -1, reg_sX(b And 3)),
IIf((b And 16) > 0, acc_r, reg_r), adr_im, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_pr, mdr_we)
 Call SFlg(.DIB(2), mdr_ri, IIf((b And 32) > 0, -1, reg_sX((b And
12) \ 43)), IIf((b And 32) > 0, acc_w, reg_w))
 Exit Sub
 ElseIf (b >= &HD8) And (b <= &HDB) Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), op_idb_im, Asc(Mid(.CIB, 2, 1)), adr_im,
adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_pr, mdr_we)
 Call SFlg(.DIB(2), mdr_ri, reg_sX(b And 3), reg_w)
 Exit Sub
 ElseIf b = &HE5 Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), op_idb_im, Asc(Mid(.CIB, 2, 1)), adr_im,
adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_pr, mdr_we)
 Call SFlg(.DIB(2), mdr_ri, acc_w)

 Exit Sub
 End If

 '--- OUT ---'
 If b = &HD4 Then
 b = Asc(Mid(.CIB, 2, 1))
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), IIf((b And 32) > 0, -1, reg_sX((b And 12) \
4)), IIf((b And 32) > 0, acc_r, reg_r), adr_im, adr_c, mar_wi)
 Call SFlg(.DIB(1), IIf((b And 16) > 0, -1, reg_sX(b And 3)),
IIf((b And 16) > 0, acc_r, reg_r), mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_pw)
 Exit Sub
 ElseIf (b >= &HE0) And (b <= &HE3) Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), reg_sX(b And 3), reg_r, adr_im, adr_c,
mar_wi)
 Call SFlg(.DIB(1), op_idb_im, Chr2Dec(Mid(.CIB, 2, 2)),
mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_pw)
 Exit Sub
 ElseIf (b >= &HD0) And (b <= &HD3) Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), op_idb_im, Asc(Mid(.CIB, 2, 1)), adr_im,
adr_c, mar_wi)
 Call SFlg(.DIB(1), reg_sX(b And 3), reg_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_pw)
 Exit Sub
 ElseIf b = &HD5 Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), acc_r, adr_im, adr_c, mar_wi)
 Call SFlg(.DIB(1), op_idb_im, Chr2Dec(Mid(.CIB, 2, 2)),
mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_pw)
 Exit Sub
 ElseIf b = &HD6 Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), op_idb_im, Asc(Mid(.CIB, 2, 1)), adr_im,
adr_c, mar_wi)
 Call SFlg(.DIB(1), acc_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_pw)
 Exit Sub
 ElseIf b = &HD7 Then
 ReDim .DIB(-1 To 2)
 Call SFlg(.DIB(0), op_idb_im, Asc(Mid(.CIB, 2, 1)), adr_im,
adr_c, mar_wi)
 Call SFlg(.DIB(1), op_idb_im, Chr2Dec(Mid(.CIB, 3, 2)),
mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_pw)
 Exit Sub
 End If

 '--- IRET ---'
 If b = &H73 Then
 ReDim .DIB(-1 To 5)
 'pop fl
 Call SFlg(.DIB(0), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(2), mdr_ri, flg_w)
 'pop pc
 Call SFlg(.DIB(3), reg_spd, reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(4), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(5), reg_sip, mdr_ri, reg_w)
 Exit Sub
 End If

 'Could not decode
 Call Errr("Failed to decode instruction starting with " +
Dec2Hex(CInt(b), 2) + "h.")

 End With
End Sub

'---'
' Private Sub eExecute() '
' '
' Advances simulation by one tick when CPU is in '
' execute mode. Does NOT check if it is. Executes '
' current microinstruction, switches CPU to Fetch '
' mode after executing last microinstruction. '
'---'
Private Sub eExecute()
 With Proj.CPU
 Dim adr_rslt As Long

 'Check for no action
 If UBound(.DIB) = -1 Then GoTo ItsOver

CLab – Implementation Listings

 94

 'Halt
 If GFlg(.DIB(.eDP), ctl_halt) Then
 Proj.Paused = True
 Proj.Running = True
 Proj.Halted = True
 fiMain.UpdateAll
 Call MsgBox("CPU halted", vbOKOnly + vbInformation)
 GoTo ItsOver
 End If
 'Condition
 If GFlg(.DIB(.eDP), op_jmp_cond) Then
 'jg - zf=0 and sf=o
 If .DIB(.eDP).nJmpCond = 0 Then If ((.FLAGS And flZ) = 0) And
((.FLAGS And flS) = 0) Then GoTo weContinue
 'jle - zf=1 or sf<>of
 If .DIB(.eDP).nJmpCond = 1 Then If ((.FLAGS And flS) = flS) Or
(((.FLAGS And flS) = flS) <> ((.FLAGS And flO) = flO)) Then GoTo
weContinue
 'jl - sf<>of
 If .DIB(.eDP).nJmpCond = 2 Then If ((.FLAGS And flS) = flS) <>
((.FLAGS And flO) = flO) Then GoTo weContinue
 'jge - sf=of
 If .DIB(.eDP).nJmpCond = 3 Then If ((.FLAGS And flS) = flS) =
((.FLAGS And flO) = flO) Then GoTo weContinue
 'jz - zf=1
 If .DIB(.eDP).nJmpCond = 4 Then If ((.FLAGS And flZ) = flZ) Then
GoTo weContinue
 'jnz - zf=0
 If .DIB(.eDP).nJmpCond = 5 Then If ((.FLAGS And flZ) = 0) Then
GoTo weContinue
 'jc - cf=1
 If .DIB(.eDP).nJmpCond = 6 Then If ((.FLAGS And flC) = flC) Then
GoTo weContinue
 'jnc - cf=0
 If .DIB(.eDP).nJmpCond = 7 Then If ((.FLAGS And flC) = 0) Then
GoTo weContinue
 'jo - of=1
 If .DIB(.eDP).nJmpCond = 8 Then If ((.FLAGS And flO) = flO) Then
GoTo weContinue
 'jno - of=0
 If .DIB(.eDP).nJmpCond = 9 Then If ((.FLAGS And flO) = 0) Then
GoTo weContinue
 'js - sf=1
 If .DIB(.eDP).nJmpCond = 10 Then If ((.FLAGS And flS) = flS) Then
GoTo weContinue
 'jns - sf=0
 If .DIB(.eDP).nJmpCond = 11 Then If ((.FLAGS And flS) = 0) Then
GoTo weContinue
 GoTo ItsOver
weContinue:
 End If

 'Decrememnt SP
 If GFlg(.DIB(.eDP), reg_spd) Then .SP = .SP - 2

 'Flags
 If GFlg(.DIB(.eDP), flg_stz) Then .FLAGS = .FLAGS Or flZ
 If GFlg(.DIB(.eDP), flg_stc) Then .FLAGS = .FLAGS Or flC
 If GFlg(.DIB(.eDP), flg_sto) Then .FLAGS = .FLAGS Or flO
 If GFlg(.DIB(.eDP), flg_sts) Then .FLAGS = .FLAGS Or flS
 If GFlg(.DIB(.eDP), flg_sti) Then .FLAGS = .FLAGS Or flI
 If GFlg(.DIB(.eDP), flg_clz) Then .FLAGS = .FLAGS And Not flZ
 If GFlg(.DIB(.eDP), flg_clc) Then .FLAGS = .FLAGS And Not flC
 If GFlg(.DIB(.eDP), flg_clo) Then .FLAGS = .FLAGS And Not flO
 If GFlg(.DIB(.eDP), flg_cls) Then .FLAGS = .FLAGS And Not flS
 If GFlg(.DIB(.eDP), flg_cli) Then .FLAGS = .FLAGS And Not flI

 'Select register
 If GFlg(.DIB(.eDP), reg_sb) Then .eSelectedReg = 0
 If GFlg(.DIB(.eDP), reg_sc) Then .eSelectedReg = 1
 If GFlg(.DIB(.eDP), reg_sd) Then .eSelectedReg = 2
 If GFlg(.DIB(.eDP), reg_se) Then .eSelectedReg = 3
 If GFlg(.DIB(.eDP), reg_ssp) Then .eSelectedReg = 4
 If GFlg(.DIB(.eDP), reg_sip) Then .eSelectedReg = 5

 'Read operations for IDB
 If GFlg(.DIB(.eDP), reg_r) Then
 If .eSelectedReg = 4 Then
 .eIDB = .SP
 ElseIf .eSelectedReg = 5 Then
 .eIDB = .IP
 ElseIf .eSelectedReg >= 0 And .eSelectedReg <= 3 Then
 .eIDB = .R(.eSelectedReg)
 End If
 End If
 If GFlg(.DIB(.eDP), acc_r) Then .eIDB = .A
 If GFlg(.DIB(.eDP), flg_r) Then .eIDB = .FLAGS
 If GFlg(.DIB(.eDP), mdr_ri) Then .eIDB = .MDR

 'Immediate
 If GFlg(.DIB(.eDP), op_idb_im) Then .eIDB = .DIB(.eDP).nToIDB
 'Addressing
 If GFlg(.DIB(.eDP), adr_c) Then
 adr_rslt = 0
 If GFlg(.DIB(.eDP), adr_sr) Then
 If .eSelectedReg = 4 Then
 adr_rslt = adr_rslt + .SP * .DIB(.eDP).nAdrMul
 ElseIf .eSelectedReg = 5 Then
 adr_rslt = adr_rslt + .IP * .DIB(.eDP).nAdrMul
 Else
 adr_rslt = adr_rslt + .R(.eSelectedReg) *
.DIB(.eDP).nAdrMul
 End If
 End If
 If GFlg(.DIB(.eDP), adr_br) Then adr_rslt = adr_rslt + .R(0)
 If GFlg(.DIB(.eDP), adr_im) Then adr_rslt = adr_rslt + .eIDB
 .eIAB = adr_rslt
 End If
 'MAR
 If GFlg(.DIB(.eDP), mar_ri) Then .eIAB = .MAR
 'External buses read
 If GFlg(.DIB(.eDP), mar_re) Then .eEAB = .MAR
 If GFlg(.DIB(.eDP), mdr_re) Then .eEDB = .MDR

 'LEA
 If GFlg(.DIB(.eDP), lea_ad) Then .eIDB = .eIAB
 If GFlg(.DIB(.eDP), lea_da) Then .eIAB = .eIDB
 'Memory operations
 If GFlg(.DIB(.eDP), ctl_mr) Then .eEDB = Proj.RAM(.eEAB) *
CLng(256) + Proj.RAM(.eEAB + 1)
 If GFlg(.DIB(.eDP), ctl_mw) Then Proj.RAM(.eEAB) = Int(.eEDB /
256) And &HFF: Proj.RAM(.eEAB + 1) = .eEDB And &HFF
 'Port IO operations
 If GFlg(.DIB(.eDP), ctl_pr) Then .eEDB = devPortRead(.eEAB And
65535)
 If GFlg(.DIB(.eDP), ctl_pw) Then Call devPortWrite(.eEAB And
65535, .eEDB)

 'ALU
 Dim l1 As Long, l2 As Long, l3 As Long
 Dim i As Integer, lf As Long
 Dim b1 As Boolean, b2 As Boolean, b3 As Boolean
 Dim scf As Integer 'set carry flag: -1 leave, 0 set false, 1 set
true
 scf = -1
 If GFlg(.DIB(.eDP), op_alu_c) Then
 i = .DIB(.eDP).nAluOpNum
 If GFlg(.DIB(.eDP), alu_swp) Then
 l1 = .eIDB 'operand 1
 l2 = .A 'operand 2
 Else
 l1 = .A 'operand 1
 l2 = .eIDB 'operand 2
 End If
 l3 = l1 'result to be saved
 lf = l1 'result to be used for flags
 b1 = (l1 And 32768) > 0 'l1 is negative for signed ops
 b2 = (l2 And 32768) > 0 'l2 is negative for signed ops
 If (i >= 27) And (i <= 34) Then
 i = i - 8
 l1 = .DIB(.eDP).nAluSh
 End If
 If i = 0 Then 'add
 l3 = l1 + l2
 lf = l3
 ElseIf i = 1 Then 'sub
 l3 = l1 - l2
 lf = l3
 ElseIf i = 2 Then 'adc
 l3 = l1 + l2 + IIf((.FLAGS And flC) > 0, 1, 0)
 lf = l3
 ElseIf i = 3 Then 'sbb
 l3 = l1 - l2 - IIf((.FLAGS And flC) > 0, 1, 0)
 lf = l3
 ElseIf i = 4 Then 'cmp
 lf = l1 - l2
 ElseIf i = 5 Then 'mul
 l3 = l1 * l2
 lf = l3
 ElseIf i = 6 Then 'div
 l3 = l1 \ l2
 lf = l3
 ElseIf i = 7 Then 'imul
 l3 = (Abs(l1) And &H7FFF) * (Abs(l2) And &H7FFF)
 If (b1 Xor b2) Then l3 = -l3
 lf = l3

CLab – Implementation Listings

 95

 ElseIf i = 8 Then 'idiv
 l3 = Int((Abs(l1) And &H7FFF) / (Abs(l2) And &H7FFF))
 If (b1 Xor b2) Then l3 = -l3
 lf = l3
 ElseIf i = 9 Then 'mod
 l3 = l1 Mod l2
 lf = l3
 ElseIf i = 10 Then 'and
 l3 = l1 And l2
 lf = l3
 ElseIf i = 11 Then 'or
 l3 = l1 Or l2
 lf = l3
 ElseIf i = 12 Then 'xor
 l3 = l1 Xor l2
 lf = l3
 ElseIf i = 13 Then 'test
 lf = l1 And l2
 ElseIf i = 14 Then 'inc
 l3 = l2 + 1
 lf = l3
 ElseIf i = 15 Then 'dec
 l3 = l2 - 1
 lf = l3
 ElseIf i = 16 Then 'neg
 l3 = (65535 - l2) + 1
 lf = l3
 ElseIf i = 17 Then 'not
 l3 = 65535 - l2
 lf = l3
 ElseIf i = 18 Then 'bswp
 l3 = (l2 And 65280) \ 256 + (l2 And 255) * 256
 lf = l3
 ElseIf i = 19 Then 'lshl A,Rn
 i = l1 And 15
 scf = IIf((l2 And (2 ^ (16 - i))) = 0, 0, 1)
 l3 = l2 * (2 ^ i)
 lf = l3
 ElseIf i = 20 Then 'lshr A,Rn
 i = l1 And 15
 If i > 0 Then
 scf = IIf((l2 And (2 ^ (i - 1))) = 0, 0, 1)
 l3 = l2 \ (2 ^ i)
 Else
 l3 = l2
 End If
 lf = l3
 ElseIf i = 21 Then 'ashl A,Rn
 i = l1 And 15
 scf = IIf((l2 And (2 ^ (16 - i))) = 0, 0, 1)
 l3 = l2 * (2 ^ i)
 lf = l3
 ElseIf i = 22 Then 'ashr A,Rn
 l3 = l2
 For i = 1 To l1 And 15
 scf = IIf((l2 And 1) = 0, 0, 1)
 l3 = l2 \ 2
 If (l2 And 32768) = 1 Then l3 = l3 Or 32768
 Next
 lf = l3
 ElseIf i = 23 Then 'rol A,Rn
 l3 = l2
 For i = 1 To (l1 And 15)
 l3 = ((l3 * 2) And 65535) + IIf((l3 And 32768) = 0, 0, 1)
 Next
 scf = IIf((l3 And 1) = 0, 0, 1)
 lf = l3
 ElseIf i = 24 Then 'ror A,Rn
 l3 = l2
 For i = 1 To (l1 And 15)
 l3 = (l3 \ 2) + IIf((l3 And 1) = 0, 0, 32768)
 Next
 scf = IIf((l3 And 32768) = 0, 0, 1)
 lf = l3
 ElseIf i = 25 Then 'rcl A,Rn
 l3 = l2
 scf = IIf((.FLAGS And flC) > 0, 1, 0)
 For i = 1 To (l1 And 15)
 lf = l3
 l3 = ((l3 * 2) And 65535) + IIf(scf = 1, 1, 0)
 scf = IIf((lf And 32768) = 0, 0, 1)
 Next
 lf = l3
 ElseIf i = 26 Then 'rcr A,Rn
 l3 = l2
 scf = IIf((.FLAGS And flC) > 0, 1, 0)
 For i = 1 To (l1 And 15)
 lf = l3

 l3 = (l3 \ 2) + IIf(scf = 1, 32768, 0)
 scf = IIf((lf And 1) = 0, 0, 1)
 Next
 lf = l3
 End If
 'Result to IDB
 .eIDB = (l3 And 65535)
 'I hate VB. I hate VB. I hate VB
 '(l3 and &HFFFF) returned weird results. (65535=&HFFFF)
returned
 'false. (65535=Abs(CLng(&HFFFF))) returned true, but
 'Abs(CLng(&HFFFF)) returned 1. Abs(&HFFFF) returns overflow,
and
 'CLng(&HFFFF) produces same results as &HFFFF. I hate it when
 'VB does this kind of rubbish. Why is 65535 any different from
 '&HFFFF??? Apparently anything bigger than 32767 becomes
negative
 'when written in hexadecimal form. I use hex form quite often,
I
 'wonder how many more errors like that there are in my code.

 'Flags
 b3 = (l3 And 32768) > 0
 .FLAGS = .FLAGS And (Not (flZ + flS + flO + flC + flP + flN))
 .FLAGS = .FLAGS Or IIf(lf = 0, flZ, 0)
 .FLAGS = .FLAGS Or IIf((lf And 32768) > 0, flS, 0)
 If b1 = b2 Then .FLAGS = .FLAGS Or IIf(b1 Xor b3, flO, 0)
 .FLAGS = .FLAGS Or IIf((lf And &HFFFF0000) > 0, flC, 0)
 b1 = (.FLAGS And flS)
 b2 = (.FLAGS And flO)
 .FLAGS = .FLAGS Or IIf(b1 <> b2, flN, 0)
 .FLAGS = .FLAGS Or IIf((b1 = b2) And ((.FLAGS And flZ) = 0),
flP, 0)
 If scf = 1 Then .FLAGS = .FLAGS Or flC
 If scf = 0 Then .FLAGS = .FLAGS And Not flC
 End If

 'External buses write
 If GFlg(.DIB(.eDP), mar_we) Then .MAR = .eEAB
 If GFlg(.DIB(.eDP), mdr_we) Then .MDR = .eEDB
 'Write operations for IDB
 If GFlg(.DIB(.eDP), reg_w) Then
 If .eSelectedReg = 4 Then
 .SP = .eIDB
 ElseIf .eSelectedReg = 5 Then
 .IP = .eIDB
 ElseIf .eSelectedReg >= 0 And .eSelectedReg <= 3 Then
 .R(.eSelectedReg) = .eIDB
 End If
 End If
 If GFlg(.DIB(.eDP), acc_w) Then .A = .eIDB
 If GFlg(.DIB(.eDP), flg_w) Then .FLAGS = .eIDB
 If GFlg(.DIB(.eDP), mdr_wi) Then .MDR = .eIDB

 'MAR
 If GFlg(.DIB(.eDP), mar_wi) Then .MAR = .eIAB

 'Increment IP/SP
 If GFlg(.DIB(.eDP), reg_ipi) Then .IP = .IP + 1
 If GFlg(.DIB(.eDP), reg_spi) Then .SP = .SP + 2

 'Return internal registers to zeroes in order to prevent
 'possibility of data transferred between microinstructions by
 'just being on the buses - impossible in real life.

 '.eEAB = 0 will not do this for now - wait until I will
 '.eEDB = 0 fix a bug with decoding ALU instructions - they
 '.eIAB = 0 relied on values staying in these registers
 '.eIDB = 0

 'DONE! - take next microinstruction
 .eDP = .eDP + 1

 'Last loop of execution cycle
 If .eDP = UBound(.DIB) + 1 Then
ItsOver:
 'Prepare registers
 .CIB = ""
 .Fetch = True
 .eDP = 0
 ReDim .DIB(-1 To -1)
 'Process interrupts
 eInterrupt
 End If

 End With
End Sub

CLab – Implementation Listings

 96

'--'
' Private Sub eInterrupt() '
' '
' Checks if an interrupt is required, prepares '
' a microprogram to initiate one if necessary '
'--'
Private Sub eInterrupt()
 With Proj.CPU

 'Interrupt number to be initiated
 Dim INTx As Long, i As Integer
 INTx = -1

 'Get interrupt number
 For i = 0 To 15
 If (.IS And 2 ^ i) > 0 Then
 INTx = i
 .IS = .IS And Not (2 ^ i) 'clear the Pending flag
 Exit For
 End If
 Next

 'Initiate interrupt
 If INTx <> -1 Then
 ReDim .DIB(-1 To 8)
 'push pc
 Call SFlg(.DIB(0), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(1), reg_sip, reg_r, mdr_wi)
 Call SFlg(.DIB(2), mdr_re, mar_re, ctl_mw, reg_spi)
 'push fl
 Call SFlg(.DIB(3), reg_ssp, adr_sr, adr_c, mar_wi)
 Call SFlg(.DIB(4), flg_r, mdr_wi)
 Call SFlg(.DIB(5), mdr_re, mar_re, ctl_mw, reg_spi, flg_cli)
 'get interrupt vector
 Call SFlg(.DIB(6), op_idb_im, 65280 + INTx * 2, adr_im, adr_c,
mar_wi)
 Call SFlg(.DIB(7), mar_re, ctl_mr, mdr_we)
 'jump to received address
 Call SFlg(.DIB(8), mdr_ri, reg_sip, reg_w)

 'Continue execute cycle
 .Fetch = False
 .CIB = ""
 End If

 End With
End Sub

'---'
' Private Sub DecodeMem(MemOffset As Integer) '
' '
' DESCRIPTION: after calling this procedure, .DIB '
' will have added to it microcommands that put '
' required address into MAR. '
' '
' PARAMETERS: '
' MemOffset - offset of addressing bytes in CIB '
'---'
Private Sub DecodeMem(MemOffset As Integer)
 With Proj.CPU

 Dim adr As String, z As Integer, b As Integer
 adr = Mid(.CIB, MemOffset) 'separate the addressing
 b = Asc(Left(adr, 1)) 'first byte of the addressing
 z = UBound(.DIB) + 1 'zero offset for DIB - to simplify adding
lines
 If (b And 192) = 0 Then
 If (b And 1) = 0 Then 'direct via immediate
 ReDim Preserve .DIB(-1 To z + 0)
 Call SFlg(.DIB(z + 0), adr_im, adr_c, mar_wi, op_idb_im,
Chr2Dec(Mid(adr, 2, 2)))
 Else 'indirect via immediate
 ReDim Preserve .DIB(-1 To z + 2)
 Call SFlg(.DIB(z + 0), adr_im, adr_c, mar_wi, op_idb_im,
Chr2Dec(Mid(adr, 2, 2)))
 Call SFlg(.DIB(z + 1), mar_re, ctl_mr, mdr_we)
 Call SFlg(.DIB(z + 2), adr_im, adr_c, mdr_ri, mar_wi)
 End If
 ElseIf (b And 192) = 64 Then 'indirect via register
 ReDim Preserve .DIB(-1 To z + 0)
 Call SFlg(.DIB(z + 0), reg_sX(b And 3), adr_sr, adr_c, mar_wi)
 ElseIf (b And 128) = 128 Then 'indexed
 ReDim Preserve .DIB(-1 To z + 0)
 Call SFlg(.DIB(z + 0), IIf((b And 64) = 64, adr_br, -1), reg_sX(b
And 3), _
 IIf((b And 32) = 32, op_idb_im, -1), IIf((b And 32) = 32,
Chr2Dec(Mid(adr, 2, 2)), -1), _

 op_adr_mm, (b And 12) \ 4, adr_sr, IIf((b And 32) = 32,
adr_im, -1), adr_c, mar_wi)
 End If

 End With
End Sub

'--'
' Private Function reg_sX(ByVal Index As Integer) As integer '
' '
' Returns "Select register X" signal for R(Index) '
'--'
Private Function reg_sX(ByVal Index As Integer) As Integer
 reg_sX = 0
 If Index = 0 Then reg_sX = reg_sb: Exit Function
 If Index = 1 Then reg_sX = reg_sc: Exit Function
 If Index = 2 Then reg_sX = reg_sd: Exit Function
 If Index = 3 Then reg_sX = reg_se: Exit Function
End Function

'--'
' Public Function DI2Str(ByRef db As TpDI) As String '
' '
' Converts microinstruction db into text with all '
' the signals in a logical order. '
'--'
Public Function DI2Str(ByRef db As TpDI) As String
 Dim s As String, i As Integer
 s = ""

 'Condition
 If GFlg(db, op_jmp_cond) Then s = s + "jmp_cond(" +
CStr(db.nJmpCond) + "), "

 'Decrement SP
 If GFlg(db, reg_spd) Then s = s + "reg_spd, "

 'Flags
 If GFlg(db, flg_stz) Then s = s + "flg_stz, "
 If GFlg(db, flg_stc) Then s = s + "flg_stc, "
 If GFlg(db, flg_sto) Then s = s + "flg_sto, "
 If GFlg(db, flg_sts) Then s = s + "flg_sts, "
 If GFlg(db, flg_sti) Then s = s + "flg_sti, "
 If GFlg(db, flg_clz) Then s = s + "flg_clz, "
 If GFlg(db, flg_clc) Then s = s + "flg_clc, "
 If GFlg(db, flg_clo) Then s = s + "flg_clo, "
 If GFlg(db, flg_cls) Then s = s + "flg_cls, "
 If GFlg(db, flg_cli) Then s = s + "flg_cli, "

 'Select register
 If GFlg(db, reg_sb) Then s = s + "reg_sb, "
 If GFlg(db, reg_sc) Then s = s + "reg_sc, "
 If GFlg(db, reg_sd) Then s = s + "reg_sd, "
 If GFlg(db, reg_se) Then s = s + "reg_se, "
 If GFlg(db, reg_ssp) Then s = s + "reg_ssp, "
 If GFlg(db, reg_sip) Then s = s + "reg_sip, "

 'Read operations for IDB
 If GFlg(db, reg_r) Then s = s + "reg_r, "
 If GFlg(db, acc_r) Then s = s + "acc_r, "
 If GFlg(db, flg_r) Then s = s + "flg_r, "
 If GFlg(db, mdr_ri) Then s = s + "mdr_ri, "

 'Immediate
 If GFlg(db, op_idb_im) Then s = s + "idb_im(0" +
Dec2Hex(db.nToIDB, 4) + "h), "
 'Addressing
 If GFlg(db, op_adr_mm) Then s = s + "adr_mm_" + CStr(db.nAdrMul)
+ ", "
 If GFlg(db, adr_br) Then s = s + "adr_br, "
 If GFlg(db, adr_im) Then s = s + "adr_im, "
 If GFlg(db, adr_c) Then s = s + "adr_c, "
 'MAR
 If GFlg(db, mar_ri) Then s = s + "mar_ri, "
 'External buses read
 If GFlg(db, mar_re) Then s = s + "mar_re, "
 If GFlg(db, mdr_re) Then s = s + "mdr_re, "

 'LEA
 If GFlg(db, lea_ad) Then s = s + "lea_ad, "
 'Memory operations
 If GFlg(db, ctl_mr) Then s = s + "ctl_mr, "
 If GFlg(db, ctl_mw) Then s = s + "ctl_mw, "
 'Port IO operations
 If GFlg(db, ctl_pr) Then s = s + "ctl_pr, "
 If GFlg(db, ctl_pw) Then s = s + "ctl_pw, "

 'ALU

CLab – Implementation Listings

 97

 If GFlg(db, alu_swp) Then s = s + "alu_swp, "
 If GFlg(db, op_alu_sh) Then s = s + "alu_sh(" + CStr(db.nAluSh) +
"), "
 If GFlg(db, op_alu_c) Then s = s + "alu_c(" + CStr(db.nAluOpNum) +
"), "

 'External buses write
 If GFlg(db, mar_we) Then s = s + "mar_we, "
 If GFlg(db, mdr_we) Then s = s + "mdr_we, "
 'Write operations for IDB
 If GFlg(db, reg_w) Then s = s + "reg_w, "
 If GFlg(db, acc_w) Then s = s + "acc_w, "
 If GFlg(db, flg_w) Then s = s + "flg_w, "
 If GFlg(db, mdr_wi) Then s = s + "mdr_wi, "

 'MAR
 If GFlg(db, mar_wi) Then s = s + "mar_wi, "

 'Increment IP/SP
 If GFlg(db, reg_ipi) Then s = s + "reg_ipi, "
 If GFlg(db, reg_spi) Then s = s + "reg_spi, "

 'Halt
 If GFlg(db, ctl_halt) Then s = s + "ctl_halt, "

 'Return result
 If Len(s) > 2 Then DI2Str = Left(s, Len(s) - 2) Else DI2Str = s
End Function

22.6. pIO

Option Explicit

'--'
' Each device module will start with fd, and will only be '
' interfaced through this unit (apart from window-related '
' functions such as .Hide). Device modules should 'export' '
' the following functions: '
' '
' Init - whatever intialisation devices want. This is not '
' simulation-related - rather, interface-related, as '
' this will be called only once at program startup. '
' Reset - simulation-related initialisations. Should be '
' similar to what a real device would do when it '
' receives Reset signal. Reset will be sent when user '
' presses the computer Reset button, or during program '
' development when program is restarted. '
' Tick - function to be called every CPU tick. Whatever '
' a device would do with every rise of OSC in a real '
' CPU is what should be done in Tick. '
' PortRead - will simulate arrival of PortRead signal. '
' The function should return whatever the device would '
' place on the Data Bus in a real computer, or 999999 '
' if the device decides to ignore the signal. '
' PortWrite - simulates arrival of PortWrite signal. '
'--'

'--------------------------'
' Public Sub ioInit() '
' '
' Initializes this module '
'--------------------------'
Public Sub ioInit()
 '
End Sub

'-------------------------'
' Public Sub devInit() '
' '
' Initialises all devices '
'-------------------------'
Public Sub devInit()
 fdVideo.Init
 fdKeyboard.Init
 fdSpeaker.Init
End Sub

'-----------------------'
' Public Sub devReset() '
' '
' Resets all devices '
'-----------------------'
Public Sub devReset()
 fdVideo.Reset
 fdKeyboard.Reset
 fdSpeaker.Reset
End Sub

'----------------------'
' Public Sub devTick() '
' '
' Resets all devices '
'----------------------'
Public Sub devTick()
 fdVideo.Tick
 fdKeyboard.Tick

 fdSpeaker.Tick
End Sub

'--'
' Public Function devPortRead(PortNum As '
' Integer) As Long '
' '
' Reads a word from the specified port. '
' If no device accepts the read signal, '
' 0 is returned. '
'--'
Public Function devPortRead(PortNum As Integer) As Long
 Dim i As Long
 i = fdVideo.PortRead(PortNum)
 If i <> 999999 Then devPortRead = i: Exit Function
 i = fdKeyboard.PortRead(PortNum)
 If i <> 999999 Then devPortRead = i: Exit Function
 i = fdSpeaker.PortRead(PortNum)
 If i <> 999999 Then devPortRead = i: Exit Function
 'No one accepted - return 0
 devPortRead = 0
End Function

'--'
' Public Sub devPortWrite(PortNum As Integer, '
' Dt As Long) '
' '
' Writes a word to specified port. If no devices '
' accept the port, nothing happens. If several '
' devices would accept the port, only the first '
' one gets the signal. '
'--'
Public Sub devPortWrite(PortNum As Integer, Dt As Long)
 Call fdVideo.PortWrite(PortNum, Dt)
 Call fdKeyboard.PortWrite(PortNum, Dt)
 Call fdSpeaker.PortWrite(PortNum, Dt)
End Sub

'---'
' Public Function IRQ(IRQnum As Integer) As Boolean '
' '
' The function that devices would call to request '
' an interrupt. Interrupt is acknowledged if this '
' function returns True. '
'---'
Public Function IRQ(IRQnum As Integer) As Boolean
 With Proj.CPU

 'Validity - only IRQ numbers 0-15 are valid
 IRQ = False
 If Not (IRQnum >= 0 And IRQnum <= 15) Then Exit Function
 'Are interrupts allowed?
 If (.FLAGS And flI) = 0 Then Exit Function
 'Is this interrupt still pending?
 If (.IS And 2 ^ IRQnum) > 0 Then Exit Function
 'Set Pending bit
 .IS = .IS Or 2 ^ IRQnum
 'INTA signal
 IRQ = True

 fsRegs.Update
 fhCPU.Update
 fhCU.Update

 End With

CLab – Implementation Listings

 98

End Function

22.7. fhCPU

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Reset '
'--'

'-----------------------------'
' Public Sub Reset() '
' '
' Initialises the module and '
' related variables. '
'-----------------------------'
Public Sub Reset()
 'Empty the DIB array
 ReDim Proj.CPU.DIB(-1 To -1)

 'Init registers
 Proj.CPU.A = 0
 Proj.CPU.R(0) = 0
 Proj.CPU.R(1) = 0
 Proj.CPU.R(2) = 0
 Proj.CPU.R(3) = 0
 Proj.CPU.IP = 0
 Proj.CPU.SP = 24576 'meaning 6000h
 Proj.CPU.FLAGS = flI
 Proj.CPU.MAR = 0
 Proj.CPU.MDR = 0
 Proj.CPU.CIB = ""
 Proj.CPU.Fetch = True
 Proj.CPU.FREM = 0
 Proj.CPU.fremMem = False
 Proj.CPU.IS = 0

 Proj.CPU.eDP = 0
 Proj.CPU.eEAB = 0
 Proj.CPU.eEDB = 0
 Proj.CPU.eIAB = 0
 Proj.CPU.eIDB = 0
 Proj.CPU.eSelectedReg = 0

 Proj.P.Code = ""

 Proj.P.CompileNeeded = True

 ReDim Proj.CPU.Breakpoint(-1 To -1)

 'Update once
 Update
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fhCPU.Hide
 End If
End Sub

'---------------------'
' Public Sub Update() '
'---------------------'
Public Sub Update()
 'General registers
 LA.Text = Dec2Fmt16(Proj.CPU.A, Proj.NmbRep)
 LB.Text = Dec2Fmt16(Proj.CPU.R(0), Proj.NmbRep)
 LC.Text = Dec2Fmt16(Proj.CPU.R(1), Proj.NmbRep)
 LD.Text = Dec2Fmt16(Proj.CPU.R(2), Proj.NmbRep)
 LE.Text = Dec2Fmt16(Proj.CPU.R(3), Proj.NmbRep)
 LIP.Text = Dec2Fmt16(Proj.CPU.IP, Proj.NmbRep)
 LSP.Text = Dec2Fmt16(Proj.CPU.SP, Proj.NmbRep)
 LMAR.Text = Dec2Fmt16(Proj.CPU.MAR, Proj.NmbRep)
 LMDR.Text = Dec2Fmt16(Proj.CPU.MDR, Proj.NmbRep)
 'Flags
 LFZ.Caption = IIf((Proj.CPU.FLAGS And 1) > 0, "1", "0")
 LFS.Caption = IIf((Proj.CPU.FLAGS And 2) > 0, "1", "0")
 LFO.Caption = IIf((Proj.CPU.FLAGS And 4) > 0, "1", "0")
 LFC.Caption = IIf((Proj.CPU.FLAGS And 8) > 0, "1", "0")
 LFI.Caption = IIf((Proj.CPU.FLAGS And 16) > 0, "1", "0")

CLab – Implementation Listings

 99

 LFN.Caption = IIf((Proj.CPU.FLAGS And 256) > 0, "1", "0")
 LFP.Caption = IIf((Proj.CPU.FLAGS And 512) > 0, "1", "0")
 'Control Unit
 LFE.Caption = IIf(Proj.CPU.Fetch, "Fetch", "Execute")
 If Proj.CPU.Fetch Then
 If Proj.CPU.CIB = "" Then
 LFREM.Caption = "?"
 Else
 LFREM.Caption = IIf(Proj.CPU.fremMem, CStr(Proj.CPU.FREM + 1) +
"+", CStr(Proj.CPU.FREM))
 End If
 LEREM.Caption = "N/A"
 Else
 LEREM.Caption = CStr(UBound(Proj.CPU.DIB) - Proj.CPU.eDP + 1)
 LFREM.Caption = "N/A"
 End If
 LCIR.Caption = Str2Chr(Proj.CPU.CIB)
 LIS.Caption = Dec2Bin(Proj.CPU.IS, 16)
End Sub

'----------------------------'
' Public Sub SetComplexity() '
'----------------------------'
Public Sub SetComplexity()
 If Proj.Complexity = 0 Then
 PctPanel.Picture = PctBasic.Picture
 LMDR.Visible = False
 LMAR.Visible = False
 LCIR.Visible = False
 LFZ.Visible = False
 LFS.Visible = False
 LFO.Visible = False
 LFC.Visible = False
 LFP.Visible = False
 LFN.Visible = False
 LFI.Visible = False
 llMDR.Visible = False
 llMAR.Visible = False
 llCIR.Visible = False
 llFLAGS.Visible = False
 llFZ.Visible = False
 llFS.Visible = False
 llFO.Visible = False
 llFC.Visible = False
 llFP.Visible = False
 llFN.Visible = False
 llFI.Visible = False
 LFE.Visible = False
 llFE.Visible = False
 llFREM.Visible = False
 LFREM.Visible = False
 LEREM.Visible = False
 llEREM.Visible = False
 LIS.Visible = False
 llIS.Visible = False
 lllIS.Visible = False
 ElseIf Proj.Complexity = 1 Then
 PctPanel.Picture = PctAlevel.Picture
 LMDR.Visible = True
 LMAR.Visible = True
 LCIR.Visible = True

 LFZ.Visible = True
 LFS.Visible = True
 LFO.Visible = True
 LFC.Visible = True
 LFP.Visible = True
 LFN.Visible = True
 LFI.Visible = True
 llMDR.Visible = True
 llMAR.Visible = True
 llCIR.Visible = True
 llFLAGS.Visible = True
 llFZ.Visible = True
 llFS.Visible = True
 llFO.Visible = True
 llFC.Visible = True
 llFP.Visible = True
 llFN.Visible = True
 llFI.Visible = True
 LFE.Visible = True
 llFE.Visible = True
 llFREM.Visible = True
 LFREM.Visible = True
 LEREM.Visible = True
 llEREM.Visible = True
 LIS.Visible = True
 llIS.Visible = True
 lllIS.Visible = True
 Else
 PctPanel.Picture = PctFull.Picture
 LMDR.Visible = True
 LMAR.Visible = True
 LCIR.Visible = True
 LFZ.Visible = True
 LFS.Visible = True
 LFO.Visible = True
 LFC.Visible = True
 LFP.Visible = True
 LFN.Visible = True
 LFI.Visible = True
 llMDR.Visible = True
 llMAR.Visible = True
 llCIR.Visible = True
 llFLAGS.Visible = True
 llFZ.Visible = True
 llFS.Visible = True
 llFO.Visible = True
 llFC.Visible = True
 llFP.Visible = True
 llFN.Visible = True
 llFI.Visible = True
 LFE.Visible = True
 llFE.Visible = True
 llFREM.Visible = True
 LFREM.Visible = True
 LEREM.Visible = True
 llEREM.Visible = True
 LIS.Visible = True
 llIS.Visible = True
 lllIS.Visible = True
 End If
End Sub

22.8. fhCU

CLab – Implementation Listings

 100

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Reset '
' Update '
'--'

'Stores the string values for all registers displayed
' on this form to track changes and highlight respectively
Private LastStr(0 To 8) As String

'--------------------------'
' Public Sub Init() '
' '
' Initializes this module '
'--------------------------'
Public Sub Init()
 'Update register values
 Update
 'Save changes
 SaveLast
 'Update again to highlight nothing
 Update
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fhCU.Hide
 End If
End Sub

'--'
' Public Sub Update() '
' '
' Updates the contents of the window to '
' reflect changes to the state of the '
' simulation. '
'--'
Public Sub Update()
 'Register values
 LFE.Caption = IIf(Proj.CPU.Fetch, "Fetch", "Execute")
 If Proj.CPU.Fetch Then
 If Proj.CPU.CIB = "" Then
 LFREM.Caption = "?"
 Else
 LFREM.Caption = IIf(Proj.CPU.fremMem, CStr(Proj.CPU.FREM + 1) +
"+", CStr(Proj.CPU.FREM))
 End If
 LEREM.Caption = "N/A"
 Else
 LEREM.Caption = CStr(UBound(Proj.CPU.DIB) - Proj.CPU.eDP + 1)
 LFREM.Caption = "N/A"
 End If

 LCIB.Caption = Str2Chr(Proj.CPU.CIB)
 LIS.Caption = Dec2Bin(Proj.CPU.IS, 16)

 'Register colors
 If LastStr(0) <> LFE.Caption Then LFE.ForeColor = &HFF Else
LFE.ForeColor = 0
 If LastStr(1) <> LFREM.Caption Then LFREM.ForeColor = &HFF Else
LFREM.ForeColor = 0
 If LastStr(2) <> LEREM.Caption Then LEREM.ForeColor = &HFF Else
LEREM.ForeColor = 0
 If LastStr(3) <> LIS.Caption Then LIS.ForeColor = &HFF Else
LIS.ForeColor = 0
 If LastStr(7) <> LCIB.Caption Then LCIB.ForeColor = &HFF Else
LCIB.ForeColor = 0
 SaveLast

 'Decoded instruction buffer
 Dim i As Integer
 ListDIB.Clear
 If Proj.CPU.Fetch Then
 Call ListDIB.AddItem("<N/A>")
 Else
 If UBound(Proj.CPU.DIB) = -1 Then Call
ListDIB.AddItem("<Empty>")
 For i = 0 To UBound(Proj.CPU.DIB)
 Call ListDIB.AddItem(IIf(Proj.CPU.eDP = i, "--> ", " ") +
DI2Str(Proj.CPU.DIB(i)))
 Next
 End If

 fhCU.Caption = CStr(Proj.TickCount)
End Sub

'--'
' Private Sub SaveLast() '
' '
' Saves the state of all register in order to '
' highlight them as they change. Is called by '
' Update() after getting new values for them '
'--'
Private Sub SaveLast()
 LastStr(0) = LFE.Caption
 LastStr(1) = LFREM.Caption
 LastStr(2) = LEREM.Caption
 LastStr(3) = LIS.Caption
 LastStr(7) = LCIB.Caption
End Sub

'---------------------------------------'
' Private Sub ListDIB_Click() '
' '
' Unselects the DIB every time the user '
' clicks on it to remove the blue line '
'---------------------------------------'
Private Sub ListDIB_Click()
 ListDIB.ListIndex = -1
 fhCU.SetFocus
End Sub

'---------------------------------------'
' Private Sub ListDIB_GotFocus() '
' '
' Unselects the DIB every time the user '
' clicks on it to remove the blue line '
'---------------------------------------'
Private Sub ListDIB_GotFocus()

CLab – Implementation Listings

 101

 ListDIB.ListIndex = -1
 fhCU.SetFocus

End Sub

22.9. fhRAM

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Reset '
' Update '
'--'

'Prevent specific events
Private BlockSetEditCell As Boolean
'Fonts
Private fFixed As TFnt 'Fixed cells
Private fDef As TFnt 'Usual cells
Private fSel As TFnt 'Cursor
Private fIP As TFnt 'IP
Private fSP As TFnt 'SP
Private fIPi1 As TFnt 'IP cur instruction
Private fIPi2 As TFnt 'IP cur instruction (uncertain)
Private fCode As TFnt 'Memory loaded with compiled code
Private fVal As TFnt 'Other memory with nonzero values

'--'
' Public Sub Init() '
' '
' DESCRIPTION: initialises this module. '
'--'
Public Sub Init()
 'SG fonts - initial params
 fSel.FaceName = "Courier New"
 fSel.Size = -11
 fSel.Weight = 400
 fFixed = fSel
 fDef = fSel
 fSP = fSel
 fIP = fSel
 fIPi1 = fSel
 fIPi2 = fSel
 fCode = fSel
 fVal = fSel
 'SG fonts - colors
 fFixed.ForeColor = GetSysColor(COLOR_BTNTEXT)
 fFixed.BackColor = GetSysColor(COLOR_BTNFACE)
 fDef.ForeColor = &HC0C0C0
 fDef.BackColor = &HFFFFFF
 fSel.ForeColor = GetSysColor(COLOR_HIGHLIGHTTEXT)
 fSel.BackColor = GetSysColor(COLOR_HIGHLIGHT)
 fSP.ForeColor = 0
 fSP.BackColor = 65280
 fIP.ForeColor = &H80
 fIP.BackColor = &HFFB366
 fIP.Weight = 800
 fIPi1.ForeColor = &H80
 fIPi1.BackColor = &HFFE0C1
 fIPi1.Weight = 800
 fIPi2.ForeColor = &H80

 fIPi2.BackColor = &HFFF2E6
 fIPi2.Weight = 800
 fCode.ForeColor = 0
 fCode.BackColor = &H1FFFF
 fVal.ForeColor = 0
 fVal.BackColor = &HE0E0FF
 'SG fonts - create
 CreateFnt fFixed
 CreateFnt fDef
 CreateFnt fSel
 CreateFnt fIP
 CreateFnt fSP
 CreateFnt fIPi1
 CreateFnt fIPi2
 CreateFnt fCode
 CreateFnt fVal
 'Set SG options
 SG.Option(goEditing) = True
 SG.Option(goColMoving) = False
 SG.Option(goColSizing) = False
 SG.Option(goRangeSelect) = False
 SG.Option(goRowMoving) = False
 SG.Option(goRowSizing) = False
 SG.Option(goThumbTracking) = True
 'SG visual
 SG.ColCount = 17
 SG.RowCount = 4097
 SG.FixedCols = 1
 SG.FixedRows = 1
 Dim sz As Size
 Call SelectObject(SG.hdc, fDef.fntFont)
 Call GetTextExtentPoint32(SG.hdc, "FF", Len("FF"), sz)
 SG.DefaultColWidth = sz.cx + 4
 SG.DefaultRowHeight = sz.cy + 2
 Call SelectObject(SG.hdc, fDef.fntFont)
 Call GetTextExtentPoint32(SG.hdc, "FFFF", Len("FFFF"), sz)
 SG.ColWidths(0) = sz.cx + 4

 BlockSetEditCell = False

 Reset
 Update
End Sub

'-----------------------------'
' Public Sub Reset() '
' '
' Initialises the module and '
' related variables. '
'-----------------------------'
Public Sub Reset()
 'Clear RAM memory
 Dim i As Long
 ReDim Proj.RAM(0 To 65535) 'Redim sets everything to zeroes
End Sub

'--'

CLab – Implementation Listings

 102

' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fhRAM.Hide
 End If
End Sub

'---------------------------'
' Private Sub Form_Resize() '
'---------------------------'
Private Sub Form_Resize()
 SG.Width = ClientW.Width - 240
 SG.Height = ClientH.Height - 240
 NRun.Width = ClientW.Width - 240
 NRun.Height = ClientH.Height - 240
End Sub

'--'
' Public Sub Update() '
' '
' Updates the contents of the window to '
' reflect changes to the state of the '
' simulation. '
'--'
Public Sub Update()
 Dim rct As RECT
 Call GetClientRect(SG.hwnd, rct)
 Call InvalidateRect(SG.hwnd, rct, True)
 'Availability
 SG.Visible = Proj.Running
 NRun.Visible = Not Proj.Running
End Sub

'--'
' Private Sub SG_OnDrawCell(ByVal ACol As '
' Long, ByVal ARow As Long, ByVal RectFX '
' As Long, ByVal RectFY As Long, ByVal '
' RectTX As Long, ByVal RectTY As Long) '
'--'
Private Sub SG_OnDrawCell(ByVal ACol As Long, ByVal ARow As Long,
ByVal RectFX As Long, ByVal RectFY As Long, ByVal RectTX As Long,
ByVal RectTY As Long)
 'Initialise vars
 Dim f As TFnt 'font to be used
 Dim st As String 'value to be printed
 Dim rct As RECT 'clipping rectangle for text
 Dim i As Long
 rct.Left = RectFX + 2
 rct.Top = RectFY + 1
 rct.Right = RectTX - 2
 rct.Bottom = RectTY - 1

 'Determine the value and the colors
 If ARow = 0 And ACol = 0 Then
 f = fFixed
 st = ""
 ElseIf ARow = 0 Then
 f = fFixed
 st = Dec2Hex(ACol - 1, 2)
 ElseIf ACol = 0 Then
 f = fFixed
 st = Dec2Hex((ARow - 1) * 16, 4)
 Else
 i = (ARow - 1) * 16 + ACol - 1

 'Selection
 If SG.GetSelX = ACol And SG.GetSelY = ARow Then
 f = fSel
 'SP
 ElseIf i = Proj.CPU.SP Or i = Proj.CPU.SP + 1 Then
 f = fSP
 'IP
 ElseIf i = Proj.CPU.IP Then
 f = fIP
 'IP instruction
 ElseIf (i >= Proj.CPU.IP - Len(Proj.CPU.CIB)) And (i <
Proj.CPU.IP - Len(Proj.CPU.CIB) + InstructionLen(Proj.RAM(Proj.CPU.IP
- Len(Proj.CPU.CIB)))) Then
 f = fIPi1
 'IP instruction (uncertain)

 ElseIf (i >= Proj.CPU.IP - Len(Proj.CPU.CIB)) And (i < 3 +
Proj.CPU.IP - Len(Proj.CPU.CIB) +
InstructionLen(Proj.RAM(Proj.CPU.IP - Len(Proj.CPU.CIB)))) And
InstructionMem(Proj.RAM(Proj.CPU.IP - Len(Proj.CPU.CIB))) Then
 f = fIPi2
 'Code
 ElseIf i < Len(Proj.P.Code) Then
 f = fCode
 'Other nonzero values
 ElseIf Proj.RAM(i) <> 0 Then
 f = fVal
 'Usual cell
 Else
 f = fDef
 End If
 st = Dec2Hex(CLng(Proj.RAM(i)), 2)
 End If

 'Draw frame (ie background)
 Call SelectObject(SG.hdc, f.fntBrush)
 Call SelectObject(SG.hdc, GetStockObject(7)) 'BLACK_PEN
 Call Rectangle(SG.hdc, RectFX - 1, RectFY - 1, RectTX + 1,
RectTY + 1)
 'Draw text
 Call FntWrite(f, SG.hdc, st, rct)
End Sub

'--'
' Private Sub SG_OnGetEditText(ByVal ACol As '
' Long, ByVal ARow As Long, Value As String) '
'--'
Private Sub SG_OnGetEditText(ByVal ACol As Long, ByVal ARow As
Long, Value As String)
 Value = Dec2Hex(CLng(Proj.RAM((ARow - 1) * 16 + ACol - 1)), 2)
End Sub

'---'
' Private Sub SG_OnSetEditText(ByVal ACol '
' As Long, ByVal ARow As Long, ByVal '
' Value As String) '
'---'
Private Sub SG_OnSetEditText(ByVal ACol As Long, ByVal ARow As
Long, ByVal Value As String)
 'Tests
 If BlockSetEditCell Then Exit Sub
 If SG.EditorMode Then Exit Sub
 BlockSetEditCell = True
 'Valid value?
 If Len(Value) < 1 Or Len(Value) > 2 Then
 Call MsgBox("The length of the number must be between 1 and 2
characters.", vbOKOnly + vbInformation)
 BlockSetEditCell = False
 Exit Sub
 End If
 If Not TestCharset(UCase(Value), "0123456789ABCDEF") Then
 Call MsgBox("The number must contain only characters 0-9 and
A-F to ensure that it is a hexadecimal number.", vbOKOnly +
vbInformation)
 BlockSetEditCell = False
 Exit Sub
 End If
 'Write to memory
 Proj.RAM((ARow - 1) * 16 + ACol - 1) = Hex2Dec(Value)
 'Finished
 BlockSetEditCell = False
End Sub

'--'
' Private Sub SG_OnMouseDown(ByVal MouseButton '
' As StringGridVBProj.TxMouseButton) '
'--'
Private Sub SG_OnMouseDown(ByVal MouseButton As
StringGridVBProj.TxMouseButton)
 If MouseButton = mbRight Then PopupMenu MIOptions
End Sub

Private Sub BtnGoto_Click()
'On Error GoTo Errrr
' 'Input address
' Dim Addr As String, n As Long
'retry:
' Addr = InputBox("Please enter the address that you would like
to see:", "Go to offset", CStr(rgFrom * 16))
' If Addr = "" Then Exit Sub
' If Right(Addr, 1) = "h" Then
' If Not TestCharset(Left(Addr, Len(Addr) - 1),
"0123456789ABCDEF") Then

CLab – Implementation Listings

 103

' Call Errr("The string you entered is not a number. It should
contain 0-9 for decimal numbers, 0-9 & A-F for hexadecimal numbers
ending with 'h', and 0-1 for binary numbers ending with 'b'.")
' GoTo retry
' End If
' n = Hex2Dec(Left(Addr, Len(Addr) - 1))
' ElseIf Right(Addr, 1) = "b" Then
' If Not TestCharset(Left(Addr, Len(Addr) - 1), "01") Then
' Call Errr("The string you entered is not a number. It should
contain 0-9 for decimal numbers, 0-9 & A-F for hexadecimal numbers
ending with 'h', and 0-1 for binary numbers ending with 'b'.")
' GoTo retry
' End If
' n = Bin2Dec(Left(Addr, Len(Addr) - 1))
' Else
' If Not TestCharset(Left(Addr, Len(Addr) - 1), "0123456789") Then
' Call Errr("The string you entered is not a number. It should
contain 0-9 for decimal numbers, 0-9 & A-F for hexadecimal numbers
ending with 'h', and 0-1 for binary numbers ending with 'b'.")
' GoTo retry
' End If
' n = CLng(Addr)
' End If
' If n < 0 Or n > 65535 Then
' Call Errr("The address should be between 0 and 65535 (0000h and
0FFFFh)")

' GoTo retry
' End If
' rgFrom = n \ 16
' If rgFrom > 4095 - 7 Then rgFrom = 4095 - 7
' Update
' Exit Sub
'
'Errrr:
' Call Errr("The address should be between 0 and 65535 (0000h and
0FFFFh)")
' Resume retry
End Sub

Private Sub BtnShowIP_Click()
' rgFrom = Proj.CPU.IP \ 16
' If rgFrom > 4095 - 7 Then rgFrom = 4095 - 7
' Update
End Sub

Private Sub BtnShowSP_Click()
' rgFrom = Proj.CPU.SP \ 16
' If rgFrom > 4095 - 7 Then rgFrom = 4095 - 7
' Update
End Sub

22.10. fdKeyboard

Option Explicit

'Key code to key name map
Private KeyName(0 To 51) As String
'Key code to be sent to programs
Private CurKey As Integer
'Last key pressed - just for user information
Private LastKey As Integer
'Whether interrupt has been sent
Private InterruptSent As Boolean

'--------------------------'
' Public Sub Init() '
' '
' Initializes this module '
'--------------------------'
Public Sub Init()
 'Initialize key names
 Dim i As Integer
 For i = 0 To 25
 KeyName(i) = Chr$(i + 65)
 Next
 KeyName(26) = "."
 KeyName(27) = "Enter"
 KeyName(28) = "Spacebar"
 KeyName(29) = "="
 For i = 0 To 9
 KeyName(i + 30) = Chr$(i + 48)
 Next
 KeyName(40) = "Numpad ."
 KeyName(41) = "/"
 KeyName(42) = "*"
 KeyName(43) = "-"
 KeyName(44) = "+"
 KeyName(45) = "Left arrow"
 KeyName(46) = "Right arrow"
 KeyName(47) = "Up arrow"
 KeyName(48) = "Down arrow"

 KeyName(49) = "Circle"
 KeyName(50) = "Square"
 KeyName(51) = "Triangle"
 'Reset once
 Reset
End Sub

'--------------------'
' Public Sub Reset() '
' '
' Callback for pIO. '
'--------------------'
Public Sub Reset()
 CurKey = -1
 LastKey = -1
 InterruptSent = False
 Update
End Sub

'-------------------'
' Public Sub Tick() '
' '
' Callback for pIO. '
'-------------------'
Public Sub Tick()
 'Send interrupt
 If CurKey <> -1 And Not InterruptSent Then
 InterruptSent = IRQ(1)
 Update
 End If
End Sub

'----------------------------------'
' Public Function PortRead(PortNum '
' As Integer) As Long '
' '
' Callback for pIO. '
'----------------------------------'

CLab – Implementation Listings

 104

Public Function PortRead(PortNum As Integer) As Long
 If PortNum <> &H60 Then PortRead = 999999: Exit Function
 If CurKey = -1 Then
 PortRead = 65535
 Else
 PortRead = CurKey
 LastKey = CurKey
 CurKey = -1
 Update
 End If
End Function

'------------------------------'
' Public Sub PortWrite(PortNum '
' As Integer, Dt As Long) '
' '
' Callback for pIO. '
'------------------------------'
Public Sub PortWrite(PortNum As Integer, Dt As Long)
 'Nothing
End Sub

'---------------------------'
' Private Sub Update() '
' '
' Updates screen to reflect '
' current situation. '
'---------------------------'

Private Sub Update()
 If CurKey = -1 Then LPending.Caption = "None" Else
LPending.Caption = Dec2Hex(CLng(CurKey), 2) + "h " +
KeyName(CurKey)
 If LastKey = -1 Then LLast.Caption = "None" Else LLast.Caption
= Dec2Hex(CLng(LastKey), 2) + "h " + KeyName(LastKey)
 If CurKey = -1 Then
 LIRQ.Caption = "N/A"
 Else
 LIRQ.Caption = IIf(InterruptSent, "Accepted. Waiting port
read.", "Rejected. Retrying.")
 End If
End Sub

'--'
' Public Sub KeyDown(KeyCode As Integer) '
' '
' This sub is called by keyboard windows '
' when a key is pressed. The event is '
' processed in Tick method. '
'--'
Public Sub KeyDown(KeyCode As Integer)
 If CurKey = -1 Then
 CurKey = KeyCode
 InterruptSent = IRQ(1)
 Update
 End If
End Sub

22.11. fdSpeaker

Option Explicit

'Current state - low/high
Private spkState As Boolean
'Current frequency - 20/65535*X Hz
Private spkFreq As Long

'--------------------------'
' Public Sub Init() '
' '
' Initializes this module '
'--------------------------'
Public Sub Init()
 'Reset once
 Reset
End Sub

'--------------------'
' Public Sub Reset() '
' '
' Callback for pIO. '
'--------------------'
Public Sub Reset()
 spkState = False
 spkFreq = 0
 TmrFreq.Enabled = False
 Update
End Sub

'-------------------'
' Public Sub Tick() '

' '
' Callback for pIO. '
'-------------------'
Public Sub Tick()
 '
End Sub

'----------------------------------'
' Public Function PortRead(PortNum '
' As Integer) As Long '
' '
' Callback for pIO. '
'----------------------------------'
Public Function PortRead(PortNum As Integer) As Long
 If PortNum <> &H80 Then PortRead = 999999: Exit Function
 PortRead = spkFreq
End Function

'------------------------------'
' Public Sub PortWrite(PortNum '
' As Integer, Dt As Long) '
' '
' Callback for pIO. '
'------------------------------'
Public Sub PortWrite(PortNum As Integer, Dt As Long)
 If PortNum <> &H80 Then Exit Sub
 spkFreq = Dt
 If Dt = 0 Then spkState = False
 If Dt = 1 Then spkState = True
 If spkFreq >= 2 Then
 TmrFreq.Interval = Int(1 / (20 / 65535 * spkFreq) * 1000)

CLab – Implementation Listings

 105

 TmrFreq.Enabled = True
 Else
 TmrFreq.Enabled = False
 End If
 Update
End Sub

'---------------------------'
' Private Sub Update() '
' '
' Updates screen to reflect '
' current situation. '
'---------------------------'
Private Sub Update()
 'Refresh picture
 If LState.Caption <> IIf(spkState, "High", "Low") Then Pct_Paint
 LState.Caption = IIf(spkState, "High", "Low")
 LFreq.Caption = IIf(spkFreq = 0 Or spkFreq = 1, "N/A", CStr(Int(10
/ 65535 * spkFreq * 100) / 100) + " Hz")
End Sub

'-------------------------'
' Private Sub Pct_Paint() '
'-------------------------'
Private Sub Pct_Paint()
 If spkState Then
 Call Pct.PaintPicture(PctH.Picture, 0, 0)
 Else
 Call Pct.PaintPicture(PctL.Picture, 0, 0)
 End If
End Sub

'-----------------------------'
' Private Sub TmrFreq_Timer() '
'-----------------------------'
Private Sub TmrFreq_Timer()
 spkState = Not spkState
 Update
End Sub

22.12. fdVideo

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Reset '
' SetVideoMode '
' UpdateScr '
'--'

'--'
' PORT STATE VARIABLES: '
'--'
' port51state values: '
' -1: no operations '
' other: first word written to 51h '
'--'
' port53state values: '
' '
' 0000h: no operation '
' 0100h: set pixel '
' 0500h: set pen colour '
' 0600h: set brush colour '
' 1000h: draw line '
' 1010h: set pen position '
' 1020h: continue line '
' 2000h: draw empty circle '
' 2001h: draw filled circle '
' 3000h: draw empty rectangle '
' 3001h: draw filled rectangle '
'--'
Private port51state As Long
Private port53state As Long
Private port53var1 As Long 'depends on function
Private port53var2 As Long 'depends on function

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '

' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fdVideo.Hide
 End If
End Sub

'---'
' private Sub SetVideoMode(ModeNum As Long) '
' '
' DESCRIPTION: sets the specified video mode. '
' '
' PARAMETERS: '
' ModeNum - a byte specifying video mode as '
' described in the manual. This is the same '
' code that is used with OUT instruction. '
' '
' NOTES: It is up to the caller to make sure '
' that UpdateScr is called to update image. '
'---'
Private Sub SetVideoMode(ModeNum As Long)
 Dim i
 i = ModeNum And 127
 'Check
 If (i < 1) Or ((i > 7) And (i < 129)) Or (i > 135) Then Exit Sub
 'Remember mode
 Proj.Video.Mode = i
 'Modes
 If i = 1 Then
 Proj.Video.mdColors = 0 'do not change these parameters!
 Proj.Video.mdResX = 40 'drawing procedures use constants
instead
 Proj.Video.mdResY = 15
 Proj.Video.mdType = 0

CLab – Implementation Listings

 106

 ElseIf i = 2 Then
 Proj.Video.mdColors = 1 'do not change these parameters!
 Proj.Video.mdResX = 40 'drawing procedures use constants
instead
 Proj.Video.mdResY = 15
 Proj.Video.mdType = 0
 ElseIf i = 3 Then
 Proj.Video.mdColors = 0 'do not change these parameters!
 Proj.Video.mdResX = 208 'drawing procedures use constants
instead
 Proj.Video.mdResY = 156
 Proj.Video.mdType = 1
 ElseIf i = 4 Then
 Proj.Video.mdColors = 1 'do not change these parameters!
 Proj.Video.mdResX = 104 'drawing procedures use constants
instead
 Proj.Video.mdResY = 78
 Proj.Video.mdType = 1
 ElseIf i = 5 Then
 Proj.Video.mdColors = 2 'do not change these parameters!
 Proj.Video.mdResX = 74 'drawing procedures use constants
instead
 Proj.Video.mdResY = 55
 Proj.Video.mdType = 2
 ElseIf i = 6 Then
 Proj.Video.mdColors = 3 'do not change these parameters!
 Proj.Video.mdResX = 52 'drawing procedures use constants
instead
 Proj.Video.mdResY = 39
 Proj.Video.mdType = 1
 ElseIf i = 7 Then
 Proj.Video.mdColors = 4 'do not change these parameters!
 Proj.Video.mdResX = 42 'drawing procedures use constants
instead
 Proj.Video.mdResY = 32
 Proj.Video.mdType = 1
 End If

 'Create vDC
 If Proj.Video.vDC.IsCreated Then Proj.Video.vDC.Destroy
 If Proj.Video.Mode >= 3 Then
 'Call Proj.Video.vDC.Create(fiComp.PctScr.hdc,
CLng(Proj.Video.mdResX), CLng(Proj.Video.mdResY))
 Call Proj.Video.vDC.Create(fiDisplay.PctScr.hdc,
CLng(Proj.Video.mdResX), CLng(Proj.Video.mdResY))
 Else
 'Call Proj.Video.vDC.Create(fiComp.PctScr.hdc, 320, 240)
 Call Proj.Video.vDC.Create(fiDisplay.PctScr.hdc, 320, 240)
 Dim fFont As New StdFont
 With fFont
 .Bold = False
 .charset = 1 'DEFAULT_CHARSET
 .Italic = False
 .Name = "Courier New"
 .Size = 12
 .Strikethrough = False
 .Underline = False
 .Weight = 500
 End With
 Dim fnt_sz As Size
 Set Proj.Video.vDC.Font = fFont
 Call GetTextExtentPoint32(Proj.Video.vDC.hdc, "W", 1, fnt_sz)
 Proj.Video.mdFntX = fnt_sz.cx
 Proj.Video.mdFntY = fnt_sz.cy
 Proj.Video.vDC.BackStyle = BS_OPAQUE
 Proj.Video.vDC.BackColor = 0
 Proj.Video.vDC.ForeColor = &HFFFFFF
 End If
End Sub

'--'
' Public Sub Update() '
' '
' Updates the contents of the window to '
' reflect changes to the state of the '
' simulation. '
'--'
Public Sub Update()
 'Video Mode
 LMode.Caption = Dec2Hex(CLng(Proj.Video.Mode), 2) + "h"
 LRes.Caption = CStr(Proj.Video.mdResX) + "x" +
CStr(Proj.Video.mdResY)
 Select Case Proj.Video.mdColors
 Case 0
 LColor.Caption = "B/W"
 Case 1
 LColor.Caption = "16"
 Case 2

 LColor.Caption = "256 pal"
 Case 3
 LColor.Caption = "64K"
 Case 4
 LColor.Caption = "16M"
 End Select
 Select Case Proj.Video.mdType
 Case 0
 LMType.Caption = "Text"
 Case 1
 LMType.Caption = "Graphics"
 Case 2
 LMType.Caption = "Graphics (pal)"
 End Select
 'Ports state
 LPort50.Caption = "Mode " + Dec2Hex(CLng(Proj.Video.Mode), 2) +
"h"
 LPort51.Caption = IIf(port51state = 1, "Pending 1 word",
"Ready")
 LPort52.Caption = "Offset " + Dec2Hex(Proj.Video.MemOff, 4) +
"h"
 LPort53.Caption = IIf(port53state = 0, "Ready", "Not done yet")
 LPort54.Caption = IIf(Proj.Video.autoUpdate, "Auto refresh",
"Manual refresh")
 'Update screen
 If Not Proj.Running Then fdVideo.UpdateScr
 If Proj.Running And Proj.Paused Then If Proj.Video.autoUpdate
Then fdVideo.UpdateScr
End Sub

'---'
' Public Sub UpdateScr() '
' '
' DESCRIPTION: '
' Draws the video memory on the screen(s) '
'---'
Public Sub UpdateScr()
 Dim i As Long, A As Long
 Dim x As Integer, y As Integer

 'Output video memory to memory DC
 For x = 0 To Proj.Video.mdResX - 1
 For y = 0 To Proj.Video.mdResY - 1
 If (Proj.Video.Mode And 127) = 1 Then 'text mono
 i = Proj.RAM(Proj.Video.MemOff + y * 40 + x)
 If i = 0 Then i = 32
 Call Proj.Video.vDC.PrintText(Chr(i), x *
Proj.Video.mdFntX, y * Proj.Video.mdFntY, 1000, 1000, 0)
 ElseIf (Proj.Video.Mode And 127) = 2 Then 'text color
 A = Proj.RAM(Proj.Video.MemOff + 2 * y * 40 + 2 * x + 1)
 If A = 0 Then A = 32
 Proj.Video.vDC.BackColor = IIf((A And 16) > 0, 1, 0) *
&H800000 + IIf((A And 32) > 0, 1, 0) * &H8000 + IIf((A And 64) >
0, 1, 0) * &H80 + IIf((A And 128) > 0, 1, 0) * &H7F7F7F
 Proj.Video.vDC.ForeColor = (A And 1) * &H800000 + IIf((A
And 2) > 0, 1, 0) * &H8000 + IIf((A And 4) > 0, 1, 0) * &H80 +
IIf((A And 8) > 0, 1, 0) * &H7F7F7F
 Call
Proj.Video.vDC.PrintText(Chr(Proj.RAM(Proj.Video.MemOff + 2 * y *
40 + 2 * x)), x * Proj.Video.mdFntX, y * Proj.Video.mdFntY, 1000,
1000, 0)
 ElseIf (Proj.Video.Mode And 127) = 3 Then 'graph mono
 i = y * Proj.Video.mdResY + x
 If (Proj.RAM(Proj.Video.MemOff + Int(i / 8)) And (2 ^ (i -
Int(i / 8) * 8))) > 0 Then i = 16777215 Else i = 0
 Call SetPixelV(Proj.Video.vDC.hdc, x, y, i)
 ElseIf (Proj.Video.Mode And 127) = 4 Then 'graph 4bit
 A = Proj.RAM(Proj.Video.MemOff + Int((y * 104 + x) / 2))
 If Int((y * 104 + x) / 2) = Int((y * 104 + x) / 2 + 0.5)
Then 'use most significant
 A = Int(A / 8) And &HF
 Else 'use least significant
 A = A And &HF
 End If
 i = (A And 1) * &H800000 + IIf((A And 2) > 0, 1, 0) *
&H8000 + IIf((A And 4) > 0, 1, 0) * &H80 + IIf((A And 8) > 0, 1,
0) * &H7F7F7F
 Call SetPixelV(Proj.Video.vDC.hdc, x, y, i)
 ElseIf (Proj.Video.Mode And 127) = 5 Then 'graph 8bit
 Call SetPixelV(Proj.Video.vDC.hdc, x, y,
Proj.Video.PalMem(Proj.RAM(Proj.Video.MemOff + y * 74 + x)))
 ElseIf (Proj.Video.Mode And 127) = 7 Then 'graph 24bit
 i = CLng(Proj.RAM(Proj.Video.MemOff + (y * 42 + x) * 3)) +
CLng(Proj.RAM(Proj.Video.MemOff + (y * 42 + x) * 3 + 1)) * 256 +
CLng(Proj.RAM(Proj.Video.MemOff + (y * 42 + x) * 3 + 2)) * 65536
 Call SetPixelV(Proj.Video.vDC.hdc, x, y, i)
 End If
 Next

CLab – Implementation Listings

 107

 Next

 'Update screen
 Call StretchBlt(fiComp.PctScr.hdc, 0, 0, fiComp.PctScr.Width,
fiComp.PctScr.Height, _
 Proj.Video.vDC.hdc, 0, 0, Proj.Video.vDC.Width,
Proj.Video.vDC.Height, SRCCOPY)
 Call StretchBlt(fiDisplay.PctScr.hdc, 0, 0, fiDisplay.PctScr.Width,
fiDisplay.PctScr.Height, _
 Proj.Video.vDC.hdc, 0, 0, Proj.Video.vDC.Width,
Proj.Video.vDC.Height, SRCCOPY)
End Sub

'--------------------------'
' Public Sub Init() '
' '
' Initializes this module '
'--------------------------'
Public Sub Init()
 'Create vDC
 Set Proj.Video.vDC = New VirtualDC
 'Reset once
 Reset
 Update
End Sub

'--------------------'
' Public Sub Reset() '
' '
' Callback for pIO. '
'--------------------'
Public Sub Reset()
 Dim i As Integer, A As Integer
 Dim R As Long, g As Long, b As Long
 'Init palette memory
 For i = 1 To 7
 For A = 0 To 31
 Proj.Video.PalMem((i - 1) * 32 + A) = CLng(IIf((i And 1) > 0,
A, 0)) * 8 + CLng(IIf((i And 2) > 0, A, 0)) * 2048 + CLng(IIf((i And
4) > 0, A, 0)) * 524288
 Next
 Next
 'RAM video memory offset
 Proj.Video.MemOff = 57344 '&HE000 - &HEFFF
 'Set screen mode
 Call SetVideoMode(1)

 'Reset port states
 port51state = -1
 port53state = 0
 'Other variables
 Proj.Video.autoUpdate = True
End Sub

'-------------------'
' Public Sub Tick() '
' '
' Callback for pIO. '
'-------------------'
Public Sub Tick()

End Sub

'----------------------------------'
' Public Function PortRead(PortNum '
' As Integer) As Long '
' '
' Callback for pIO. '
'----------------------------------'
Public Function PortRead(PortNum As Integer) As Long
 Select Case PortNum
 Case &H50
 '--- SCREEN MODE ---'
 PortRead = Proj.Video.Mode

 Case &H51
 '--- PALETTE ---'
 PortRead = 0

 Case &H52
 '--- MEMORY ---'
 PortRead = Proj.Video.MemOff

 Case &H53
 '--- DRAWING ---'
 PortRead = 0

 Case &H54

 '--- UPDATING ---'
 PortRead = IIf(Proj.Video.autoUpdate, 1, 0)

 Case Else
 PortRead = 999999
 Exit Function
 End Select
End Function

'------------------------------'
' Public Sub PortWrite(PortNum '
' As Integer, Dt As Long) '
' '
' Callback for pIO. '
'------------------------------'
Public Sub PortWrite(PortNum As Integer, Dt As Long)
 Dim l1 As Long
 Select Case PortNum
 Case &H50
 '--- SCREEN MODE ---'
 If ((Dt >= 1) And (Dt <= 7)) Or ((Dt >= 129) And (Dt <=
135)) Then
 Call SetVideoMode(Dt)
 UpdateScr
 End If

 Case &H51
 '--- PALETTE ---'
 If port51state = -1 Then
 port51state = Dt
 Else
 l1 = port51state And 255
 Proj.Video.PalMem(l1) = CLng((port51state And 65280) \
256) + Dt * CLng(256)
 port51state = -1
 End If

 Case &H52
 '--- MEMORY ---'
 Proj.Video.MemOff = Dt

 Case &H53
 '--- DRAWING ---'
 If port53state = 0 Then
 'Get function
 port53state = Dt
 If (port53state = &H100) Or (port53state = &H500) Or _
 (port53state = &H600) Or (port53state = &H1000) Or _
 (port53state = &H1010) Or (port53state = &H1020) Or _
 (port53state = &H2000) Or (port53state = &H2001) Or _
 (port53state = &H3000) Or (port53state = &H3001) _
 Then port53state = 0
 Else
 Select Case port53state
 Case &H100
 '--- Set pixel ---'
 Case &H500
 '--- Set pen colour ---'
 Case &H600
 '--- Set brush colour ---'
 Case &H1000
 '--- Draw line ---'
 Case &H1010
 '--- Set pen position ---'
 Case &H1020
 '--- Continue line ---'
 Case &H2000
 '--- Draw empty circle ---'
 Case &H2001
 '--- Draw filled circle ---'
 Case &H3000
 '--- Draw empty rectangle ---'
 Case &H3001
 '--- Draw filled rectangle ---'
 Case Else
 port53state = 0
 End Select
 End If

 Case &H54
 '--- UPDATING ---'
 If Dt = 0 Then
 Proj.Video.autoUpdate = False
 ElseIf Dt = 1 Then
 Proj.Video.autoUpdate = True
 Else
 If Not fiMain.MIRefNothing.Checked Then UpdateScr
 End If

CLab – Implementation Listings

 108

 End Select
End Sub

'--------------------------------'

' Private Sub BtnRefresh_Click() '
'--------------------------------'
Private Sub BtnRefresh_Click()
 UpdateScr
End Sub

22.13. fiMain

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Init '
' WindowProc '
'--'

'Indicates whether a form was visible prior to minimizing
Private frmWasVisible(0 To 20) As Boolean
'Time (GetTickCount) when the last Step was executed (Run mode)
Private lastStepTime As Long

'--'
' Public Sub Init() '
' '
' Initialises this form. This is called '
' before the form is actually shown. '
'--'
Public Sub Init()
 'Need to set Top to 0 because when visual styles are used
 'it is positions of client areas, and not captions, that
 'stay fixed. So a window's real Top is higher on screen
 'with visual styles.
 Top = 0

 'Change visuals depending on OS
 If Appp.RunningOnWinXP Then
 fiMain.BackColor = &HEDEFEF 'comctl32 v6.0 gives us toolbars with
this particular color
 Height = 1830
 Else
 fiMain.BackColor = GetSysColor(COLOR_BTNFACE)
 Height = 1710
 End If

 'Install own window procedure
 Hook

 'Init toolbars
 SetToolbarButtons
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Unlike event handlers for '
' Unload on all other forms, this handler '
' should shut down the application in a '
' proper way, which involves unloading all '
' forms. After that the application will '
' terminate. '
' '
' NOTES: prior to unloading forms, this proc '
' will query every form whether it is OK '
' for it to shut down, giving a chance to '
' save work for instance. If a form wants '
' to cancel shutdown, it will return False '
' as the result of ShutdownQuery. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 'Indicate we're really shutting down
 Appp.Terminating = True

 'Unhook this window to be sure to terminate nicely
 Unhook
 'Unload all loaded forms to terminate application.
 'We should NOT use the End statement, otherwise
 ' VB will crash. Took me an hour to figure it out.
 Dim i As Integer
 For i = Forms.Count - 1 To 0 Step -1
 Unload Forms(i)
 Next
End Sub

'---'
' Private Sub Hook() '
' '
' Hook this window to process minimize event. '
'---'
Private Sub Hook()
 Appp.PrevWndProc = SetWindowLong(fiMain.hwnd, GWL_WNDPROC,
AddressOf pGlobals.WindowProc)
End Sub

'---'
' Private Sub Unhook() '
' '
' Unhook this window prior to unloading it. '
'---'
Private Sub Unhook()
 'Set previous (VB) window procedure
 Call SetWindowLong(fiMain.hwnd, GWL_WNDPROC, Appp.PrevWndProc)
End Sub

'--'
' Public Function WindowProc(ByVal hw As Long, '
' ByVal uMsg As Long, ByVal wParam As Long, '
' ByVal lParam As Long) As Long '
' '
' DESCRIPTION: Window procedure for fiMain '
'--'
Public Function WindowProc(ByVal hw As Long, ByVal uMsg _
 As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

 If uMsg = WM_SYSCOMMAND Then
 If wParam = SC_MINIMIZE Then
 'Minimize everything, saving state
 frmWasVisible(0) = fhCPU.Visible
 frmWasVisible(1) = fhCU.Visible
 frmWasVisible(2) = fhRAM.Visible
 frmWasVisible(3) = fdVideo.Visible
 frmWasVisible(4) = fiComp.Visible
 frmWasVisible(5) = fsCode.Visible
 frmWasVisible(6) = fsRegs.Visible
 frmWasVisible(7) = fsStack.Visible
 frmWasVisible(8) = fsVars.Visible
 fhCPU.Hide
 fhCU.Hide
 fhRAM.Hide
 fdVideo.Hide
 fiComp.Hide
 fsCode.Hide
 fsRegs.Hide
 fsStack.Hide
 fsVars.Hide
 ElseIf wParam = SC_RESTORE Then
 fhCPU.Visible = frmWasVisible(0)

CLab – Implementation Listings

 109

 fhCU.Visible = frmWasVisible(1)
 fhRAM.Visible = frmWasVisible(2)
 fdVideo.Visible = frmWasVisible(3)
 fiComp.Visible = frmWasVisible(4)
 fsCode.Visible = frmWasVisible(5)
 fsRegs.Visible = frmWasVisible(6)
 fsStack.Visible = frmWasVisible(7)
 fsVars.Visible = frmWasVisible(8)
 End If
 'Call VB window proc + default window proc
 WindowProc = CallWindowProc(Appp.PrevWndProc, hw, uMsg, wParam,
lParam)
 ElseIf uMsg = WM_NCLBUTTONDOWN Then
 If wParam = HTCAPTION Then fiMain.SetFocus
 'Call VB window proc + default window proc
 WindowProc = CallWindowProc(Appp.PrevWndProc, hw, uMsg, wParam,
lParam)
 Else
 'Call VB window proc + default window proc
 WindowProc = CallWindowProc(Appp.PrevWndProc, hw, uMsg, wParam,
lParam)
 End If
End Function

'---------------------------------'
' Private Sub BtnWritePrg_Click() '
'---------------------------------'
Private Sub BtnWritePrg_Click()
 fsCode.Show
End Sub

Private Sub Command3_Click()
 Step
 fiMain.UpdateAll
End Sub

Private Sub Command4_Click()
 Tick
 fiMain.UpdateAll
End Sub

'---------------------------------'
' Private Sub MICompBasic_Click() '
'---------------------------------'
Private Sub MICompBasic_Click()
 Proj.Complexity = 0
 fhCPU.SetComplexity
 MICompBasic.Checked = True
 MICompMed.Checked = False
 MICompFull.Checked = False
End Sub

'-------------------------------'
' Private Sub MICompMed_Click() '
'-------------------------------'
Private Sub MICompMed_Click()
 Proj.Complexity = 1
 fhCPU.SetComplexity
 MICompBasic.Checked = False
 MICompMed.Checked = True
 MICompFull.Checked = False
End Sub

'--------------------------------'
' Private Sub MICompFull_Click() '
'--------------------------------'
Private Sub MICompFull_Click()
 Proj.Complexity = 2
 fhCPU.SetComplexity
 MICompBasic.Checked = False
 MICompMed.Checked = False
 MICompFull.Checked = True
End Sub

'----------------------------'
' Private Sub MIExit_Click() '
'----------------------------'
Private Sub MIExit_Click()
 Unload fiMain
End Sub

'-----------------------------'
' Private Sub MIIComp_Click() '
'-----------------------------'
Private Sub MIIComp_Click()
 fiComp.Show
End Sub

'--------------------------------'
' Private Sub MIIDisplay_Click() '
'--------------------------------'
Private Sub MIIDisplay_Click()
 fiDisplay.Show
End Sub

'----------------------------'
' Private Sub MIIKbd_Click() '
'----------------------------'
Private Sub MIIKbd_Click()
 fiKeyboard.Show
End Sub

'--------------------------------'
' Private Sub MIISpeaker_Click() '
'--------------------------------'
Private Sub MIISpeaker_Click()
 '
End Sub

'----------------------------'
' Private Sub MIHRAM_Click() '
'----------------------------'
Private Sub MIHRAM_Click()
 fhRAM.Show
End Sub

'------------------------------'
' Private Sub MIHBuses_Click() '
'------------------------------'
Private Sub MIHBuses_Click()
 '
End Sub

'----------------------------'
' Private Sub MIHCPU_Click() '
'----------------------------'
Private Sub MIHCPU_Click()
 fhCPU.Show
End Sub

'---------------------------'
' Private Sub MIHCU_Click() '
'---------------------------'
Private Sub MIHCU_Click()
 fhCU.Show
End Sub

'----------------------------'
' Private Sub MIHALU_Click() '
'----------------------------'
Private Sub MIHALU_Click()
 '
End Sub

'----------------------------'
' Private Sub MIHKbd_Click() '
'----------------------------'
Private Sub MIHKbd_Click()
 fdKeyboard.Show
End Sub

'----------------------------'
' Private Sub MIHVid_Click() '
'----------------------------'
Private Sub MIHVid_Click()
 fdVideo.Show
End Sub

'----------------------------'
' Private Sub MIHSpk_Click() '
'----------------------------'
Private Sub MIHSpk_Click()
 fdSpeaker.Show
End Sub

'-----------------------------'
' Private Sub MIDCode_Click() '
'-----------------------------'
Private Sub MIDCode_Click()
 fsCode.Show
End Sub

'-----------------------------'
' Private Sub MIDRegs_Click() '
'-----------------------------'
Private Sub MIDRegs_Click()

CLab – Implementation Listings

 110

 fsRegs.Show
End Sub

'-----------------------------'
' Private Sub MIDVars_Click() '
'-----------------------------'
Private Sub MIDVars_Click()
 fsVars.Show
End Sub

'------------------------------'
' Private Sub MIDStack_Click() '
'------------------------------'
Private Sub MIDStack_Click()
 fsStack.Show
End Sub

'----------------------------'
' Private Sub MINBin_Click() '
'----------------------------'
Private Sub MINBin_Click()
 Proj.NmbRep = 1
 Call fiMain.UpdateAll(True)
 MINBin.Checked = True
 MINDecS.Checked = False
 MINDecU.Checked = False
 MINHex.Checked = False
End Sub

'-----------------------------'
' Private Sub MINDecS_Click() '
'-----------------------------'
Private Sub MINDecS_Click()
 Proj.NmbRep = 3
 Call fiMain.UpdateAll(True)
 MINBin.Checked = False
 MINDecS.Checked = True
 MINDecU.Checked = False
 MINHex.Checked = False
End Sub

'-----------------------------'
' Private Sub MINDecU_Click() '
'-----------------------------'
Private Sub MINDecU_Click()
 Proj.NmbRep = 2
 Call fiMain.UpdateAll(True)
 MINBin.Checked = False
 MINDecS.Checked = False
 MINDecU.Checked = True
 MINHex.Checked = False
End Sub

'----------------------------'
' Private Sub MINHex_Click() '
'----------------------------'
Private Sub MINHex_Click()
 Proj.NmbRep = 0
 Call fiMain.UpdateAll(True)
 MINBin.Checked = False
 MINDecS.Checked = False
 MINDecU.Checked = False
 MINHex.Checked = True
End Sub

'------------------------------'
' Private Sub MISpdMax_Click() '
'------------------------------'
Private Sub MISpdMax_Click()
 MISpdMax.Checked = True
 MISpd01.Checked = False
 MISpd05.Checked = False
 MISpd20.Checked = False
 MISpd60.Checked = False
End Sub

'-----------------------------'
' Private Sub MISpd01_Click() '
'-----------------------------'
Private Sub MISpd01_Click()
 MISpdMax.Checked = False
 MISpd01.Checked = True
 MISpd05.Checked = False
 MISpd20.Checked = False
 MISpd60.Checked = False
End Sub

'-----------------------------'

' Private Sub MISpd05_Click() '
'-----------------------------'
Private Sub MISpd05_Click()
 MISpdMax.Checked = False
 MISpd01.Checked = False
 MISpd05.Checked = True
 MISpd20.Checked = False
 MISpd60.Checked = False
End Sub

'-----------------------------'
' Private Sub MISpd20_Click() '
'-----------------------------'
Private Sub MISpd20_Click()
 MISpdMax.Checked = False
 MISpd01.Checked = False
 MISpd05.Checked = False
 MISpd20.Checked = True
 MISpd60.Checked = False
End Sub

'-----------------------------'
' Private Sub MISpd60_Click() '
'-----------------------------'
Private Sub MISpd60_Click()
 MISpdMax.Checked = False
 MISpd01.Checked = False
 MISpd05.Checked = False
 MISpd20.Checked = False
 MISpd60.Checked = True
End Sub

'----------------------------------'
' Private Sub MIRefNothing_Click() '
'----------------------------------'
Private Sub MIRefNothing_Click()
 MIRefNothing.Checked = True
 MIRefUser.Checked = False
 MIRefAll.Checked = False
End Sub

'-------------------------------'
' Private Sub MIRefUser_Click() '
'-------------------------------'
Private Sub MIRefUser_Click()
 MIRefNothing.Checked = False
 MIRefUser.Checked = True
 MIRefAll.Checked = False
End Sub

'------------------------------'
' Private Sub MIRefAll_Click() '
'------------------------------'
Private Sub MIRefAll_Click()
 MIRefNothing.Checked = False
 MIRefUser.Checked = False
 MIRefAll.Checked = True
End Sub

'--'
' Private Sub TmrRun_Timer(Index As Integer) '
' '
' Calls Step if project is running. The '
' procedure is not executed unless a given '
' time interval has passed (speed control). '
' An array of timers is used to increase '
' call frequency. '
' '
' NOTE: UpdateAll without enforcement will '
' be called after each Step '
'--'
Private Sub TmrRun_Timer(Index As Integer)
 'Check timing
 Dim i As Integer
 If MISpdMax.Checked Then i = 0
 If MISpd01.Checked Then i = 100
 If MISpd05.Checked Then i = 500
 If MISpd20.Checked Then i = 2000
 If MISpd60.Checked Then i = 6000
 If GetTickCount - lastStepTime < i Then Exit Sub
 'Execute one step
 If Proj.Running And Not Proj.Paused Then
 lastStepTime = GetTickCount
 Step
 UpdateAll
 End If
End Sub

CLab – Implementation Listings

 111

'---------------------------------------'
' Public Sub UpdateAll(Optional Force '
' As Boolean = False) '
' '
' Updates all windows as necessary. Set '
' Force=True to update all windows in '
' any situation. '
'---------------------------------------'
Public Sub UpdateAll(Optional Force As Boolean = False)
 If Not Force And Proj.Running And Not Proj.Paused Then
 If MIRefNothing.Checked Then Exit Sub
 End If
 If Force Or Not MIRefUser.Checked Or Not Proj.Running Then
 'Update all windows
 fhCPU.Update
 fhCU.Update
 fhRAM.Update
 fsCode.Update
 fsRegs.Update
 fsStack.Update
 fsVars.Update
 fdVideo.Update
 If Not Proj.Paused And fiMain.MISpdMax.Checked Then Call
fsCode.RTB.MarksSetVisible(0, False)
 Else
 'Update user interface windows only
 fdVideo.Update
 End If
End Sub

'-----------------------------------'
' Public Sub ResetAll() '
' '
' Resets the computer, initialising '
' all hardware '
'-----------------------------------'
Public Sub ResetAll()
 Proj.TickCount = 0
 Proj.Running = False
 Proj.Paused = False
 Proj.P.CompileNeeded = True
 fhCPU.Reset
 fhRAM.Reset
 devReset
 fsCode.RTB.ReadOnly = False
 Call fsCode.RTB.MarksSetVisible(0, False)
End Sub

'--
------'
' Private Sub ToolbarProgram_ButtonClick(ByVal Button As
ComctlLib.Button) '
'--
------'
Private Sub ToolbarProgram_ButtonClick(ByVal Button As
ComctlLib.Button)
 'WRITE A PROGRAM'
 If Button.Index = 1 Then fsCode.Show
End Sub

'--
--'
' Private Sub ToolbarRun_ButtonClick(ByVal Button As
ComctlLib.Button) '
'--
--'
Private Sub ToolbarRun_ButtonClick(ByVal Button As ComctlLib.Button)
 If Button.Index = 1 Then
 'START'
 fsCode.MIStart_Click
 ElseIf Button.Index = 2 Then
 'RESET'
 fsCode.MIReset_Click
 End If
End Sub

'--
---'
' Private Sub ToolbarStep_ButtonClick(ByVal Button As
ComctlLib.Button) '
'--
---'
Private Sub ToolbarStep_ButtonClick(ByVal Button As ComctlLib.Button)
 If Button.Index = 1 Then

 'TICK'
 fsCode.MITick_ForFIMAIN
 ElseIf Button.Index = 2 Then
 'STEP'
 fsCode.MIStep_Click
 End If
End Sub

'---
-----'
' Private Sub ToolbarWnd_ButtonClick(ByVal Button As
ComctlLib.Button) '
'---
-----'
Private Sub ToolbarWnd_ButtonClick(ByVal Button As
ComctlLib.Button)
 If Button.Index = 1 Then
 'CPU'
 fhCPU.Show
 ElseIf Button.Index = 2 Then
 'RAM'
 fhRAM.Show
 ElseIf Button.Index = 3 Then
 'Registers'
 fsRegs.Show
 ElseIf Button.Index = 4 Then
 'Variables'
 fsVars.Show
 ElseIf Button.Index = 5 Then
 'Stack'
 fsStack.Show
 End If
End Sub

'---
------'
' Private Sub ToolbarWnd2_ButtonClick(ByVal Button As
ComctlLib.Button) '
'---
------'
Private Sub ToolbarWnd2_ButtonClick(ByVal Button As
ComctlLib.Button)
 If Button.Index = 1 Then
 'Computer'
 fiComp.Show
 ElseIf Button.Index = 2 Then
 'Display'
 fiDisplay.Show
 ElseIf Button.Index = 3 Then
 'Keyboard'
 fiKeyboard.Show
 ElseIf Button.Index = 4 Then
 'Speaker'
 fdSpeaker.Show
 End If
End Sub

'--------------------------------'
' Public Sub SetToolbarButtons() '
'--------------------------------'
Public Sub SetToolbarButtons()
 'Set text and image for Start
 If Proj.Running Then
 If Proj.Paused Then
 ToolbarRun.Buttons(1).Caption = "Continue"
 ToolbarRun.Buttons(1).Image = 1
 Else
 ToolbarRun.Buttons(1).Caption = "Pause"
 ToolbarRun.Buttons(1).Image = 2
 End If
 Else
 ToolbarRun.Buttons(1).Caption = "Start"
 ToolbarRun.Buttons(1).Image = 1
 End If
 'Set enabled for Stop
 If Proj.Running Or Proj.Halted Then
 ToolbarRun.Buttons(2).Enabled = True
 Else
 ToolbarRun.Buttons(2).Enabled = False
 End If
 'Set Enabled for step
 ToolbarStep.Buttons(1).Enabled = Not Proj.Running Or Proj.Paused
 ToolbarStep.Buttons(2).Enabled = Not Proj.Running Or Proj.Paused
End Sub

CLab – Implementation Listings

 112

22.14. fiComp

Option Explicit

'--'
' Public declarations in this module: '
' <NONE> '
'--'

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fiComp.Hide
 End If
End Sub

'---'
' Private Sub PctScr_Paint() '
' '
' Repaints the display in case it has been '
' erased by something. '
'---'
Private Sub PctScr_Paint()
 Call StretchBlt(fiComp.PctScr.hdc, 0, 0, fiComp.PctScr.Width,
fiComp.PctScr.Height, _
 Proj.Video.vDC.hdc, 0, 0, Proj.Video.vDC.Width,
Proj.Video.vDC.Height, SRCCOPY)
End Sub

'---'
' Private Sub LKey_Click(Index As Integer) '
' '
' Initiates key event processing mechanism '
' in the keyboard "controller". '

'---'
Private Sub LKey_Click(Index As Integer)
End Sub

'---'
' Private Sub LKey_MouseDown(Index As Integer, '
' Button As Integer, Shift As Integer, x As '
' Single, y As Single) '
' '
' Highlights the key on the keyboard that the '
' user clicks with the mouse. '
'---'
Private Sub LKey_MouseDown(Index As Integer, Button As Integer,
Shift As Integer, x As Single, y As Single)
 If Index = 27 Then
 LKey(100).BackStyle = 1
 LKey(101).BackStyle = 1
 Else
 LKey(Index).BackStyle = 1
 End If
End Sub

'---'
' Private Sub LKey_MouseUp(Index As Integer, '
' Button As Integer, Shift As Integer, x As '
' Single, y As Single) '
' '
' Highlights the key on the keyboard that the '
' user clicks with the mouse. '
'---'
Private Sub LKey_MouseUp(Index As Integer, Button As Integer,
Shift As Integer, x As Single, y As Single)
 If Index = 27 Then
 LKey(100).BackStyle = 0
 LKey(101).BackStyle = 0
 Else
 LKey(Index).BackStyle = 0
 End If
 Call fdKeyboard.KeyDown(Index)
End Sub

22.15. fiKeyboard

CLab – Implementation Listings

 113

Option Explicit

'--'
' Public declarations in this module: '
' '
' TYPES: '
' VARIABLES: '
' CONSTANTS: '
' PROCEDURES: '
'--'

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fiKeyboard.Hide
 End If
End Sub

'---'
' Private Sub LKey_MouseDown(Index As Integer, '
' Button As Integer, Shift As Integer, x As '
' Single, y As Single) '
' '

' Highlights the key on the keyboard that the '
' user clicks with the mouse. '
'---'
Private Sub LKey_MouseDown(Index As Integer, Button As Integer,
Shift As Integer, x As Single, y As Single)
 If Index = 27 Then
 LKey(100).BackStyle = 1
 LKey(101).BackStyle = 1
 Else
 LKey(Index).BackStyle = 1
 End If
End Sub

'---'
' Private Sub LKey_MouseUp(Index As Integer, '
' Button As Integer, Shift As Integer, x As '
' Single, y As Single) '
' '
' Highlights the key on the keyboard that the '
' user clicks with the mouse. '
'---'
Private Sub LKey_MouseUp(Index As Integer, Button As Integer,
Shift As Integer, x As Single, y As Single)
 If Index = 27 Then
 LKey(100).BackStyle = 0
 LKey(101).BackStyle = 0
 Else
 LKey(Index).BackStyle = 0
 End If
 Call fdKeyboard.KeyDown(Index)
End Sub

22.16. fiDisplay

Option Explicit

'--'
' Public declarations in this module: '
' '
' TYPES: '
' VARIABLES: '
' CONSTANTS: '
' PROCEDURES: '
'--'

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '

' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fiDisplay.Hide
 End If
End Sub

'---'
' Private Sub PctScr_Paint() '
' '

CLab – Implementation Listings

 114

' Repaints the display in case it has been '
' erased by something. '
'---'
Private Sub PctScr_Paint()
 Call StretchBlt(fiDisplay.PctScr.hdc, 0, 0, fiDisplay.PctScr.Width,
fiDisplay.PctScr.Height, _
 Proj.Video.vDC.hdc, 0, 0, Proj.Video.vDC.Width,
Proj.Video.vDC.Height, SRCCOPY)
End Sub

'---------------------------'
' Private Sub Form_Resize() '
'---------------------------'
Private Sub Form_Resize()
 PctScr.Width = ClientW.Width
 PctScr.Height = ClientH.Height
End Sub

22.17. fsCode

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '
' Init '
' Update '
'--'

Private errLine As Integer 'highlight an error
Private wngLine As Integer 'highlight a warning
Private Bkpt() As Integer 'breakpoints line numbers

'--'
' Public Sub Init() '
' '
' DESCRIPTION: initialises this module. '
'--'
Public Sub Init()
 'RTB highlighting
 errLine = -1
 wngLine = -1
 ReDim Bkpt(-1 To -1)
 'RTB properties
 RTB.MarksXOffset = 0
 RTB.MarksLeftMargin = 2
 Call RTB.SetOptionFlag(eoAutoIndent, True)
 Call RTB.SetOptionFlag(eoSmartTabs, False)
 Call RTB.SetOptionFlag(eoTrimTrailingSpaces, True)
 RTB.TabWidth = 6
 Call RTB.MarksCreateImgList(AppDir + "gutter.bmp", 16, 16)
 'Add one mark for instruction pointer and error pointer
 Call RTB.MarksAdd(0, 0, False)
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '

' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fsCode.Hide
 End If
End Sub

'--'
' Private Sub Form_Resize() '
' '
' Resizes all controls on the form in order '
' to allow for adjustable form size. '
'--'
Private Sub Form_Resize()
 LErr.Left = 8
 LErr.Width = PnlErr.Width - 16

 PnlCode.Height = PnlErr.Top
 RTB.Top = 8
 RTB.Height = PnlCode.Height - 16
 RTB.Width = PnlCode.Width - 8 - RTB.Left
End Sub

'-----------------------------'
' Private Sub Form_Activate() '
'-----------------------------'
Private Sub Form_Activate()
 RTB.SetFocus
End Sub

'--'
' Public Sub Update() '
' '
' Highlights current execution point. '
'--'
Public Sub Update()
 InvalidateRTB
End Sub

CLab – Implementation Listings

 115

'-------------------------------'
' Private Sub InvalidateRTB() '
' '
' Invalidates every line in RTB '
'-------------------------------'
Private Sub InvalidateRTB()
 Dim i As Integer
 RTB.BeginUpdate
 For i = RTB.TopLine To RTB.TopLine + RTB.LinesInWindow
 Call RTB.InvalidateLine(i)
 Next
 RTB.EndUpdate
End Sub

'---------------------------------------'
' Private Sub SetPanelText(s As String) '
' '
' Outputs s in status bar '
'---------------------------------------'
Private Sub SetPanelText(s As String)
 SB.Panels(4).Text = s
 SB.Refresh
End Sub

'--'
' Private Sub DisplayError(Index As Integer, '
' Silent As Boolean) '
' '
' Highlights error/warning number Index, and '
' displays a message if Silent is False '
'--'
Private Sub DisplayError(Index As Integer, Silent As Boolean)
 'Go to line and highlight it
 RTB.CaretX = 0
 LErr.ListIndex = Index
 If LErr.ListIndex <= UBound(Proj.P.ErrL.sError) Then
 RTB.CaretY = Proj.P.ErrL.lError(Index) + 1
 errLine = RTB.CaretY
 Call RTB.MarksSetImageIndex(0, 1)
 Call RTB.MarksSetLine(0, RTB.CaretY)
 Call RTB.MarksSetVisible(0, True)
 InvalidateRTB
 PnlCode.Refresh
 If Not Silent Then Call MsgBox(Proj.P.ErrL.sError(Index) +
Chr(13) + Chr(10) + Chr(13) + Chr(10) + "Line: " +
CStr(Proj.P.ErrL.lError(Index) + 1) + Chr(13) + Chr(10) + "Code: " +
Proj.P.ErrL.nError(Index), vbOKOnly + vbExclamation, "Compile
program")
 Else
 RTB.CaretY = Proj.P.ErrL.lWarning(Index -
UBound(Proj.P.ErrL.sError) - 1) + 1
 wngLine = RTB.CaretY
 Call RTB.MarksSetImageIndex(0, 1)
 Call RTB.MarksSetLine(0, RTB.CaretY)
 Call RTB.MarksSetVisible(0, True)
 InvalidateRTB
 PnlCode.Refresh
 If Not Silent Then Call MsgBox(Proj.P.ErrL.sWarning(Index -
UBound(Proj.P.ErrL.sError) - 1) + Chr(13) + Chr(10) + Chr(13) +
Chr(10) + "Line: " + CStr(Proj.P.ErrL.lWarning(Index -
UBound(Proj.P.ErrL.sError) - 1) + 1) + Chr(13) + Chr(10) + "Code: " +
Proj.P.ErrL.nWarning(Index - UBound(Proj.P.ErrL.sError) - 1),
vbOKOnly + vbExclamation, "Compile program")
 End If
End Sub

'-----------------------------------'
' Private Sub TransferBreakpoints() '
' '
' Copies all set breakpoints to the '
' Proj.CPU structure '
'-----------------------------------'
Private Sub TransferBreakpoints()
 'Check if compiled
 If Proj.P.CompileNeeded Then Exit Sub
 'Delete all breakpoints which are out of range now
 Dim i As Integer, A As Integer
 A = 0
 For i = 0 To UBound(Bkpt)
 If Bkpt(i) <= RTB.Lines.Count Then
 Bkpt(A) = Bkpt(i)
 A = A + 1
 End If
 Next
 If UBound(Bkpt) <> (A - 1) Then ReDim Preserve Bkpt(-1 To A - 1)
 'Transfer
 ReDim Proj.CPU.Breakpoint(-1 To UBound(Bkpt))
 For i = 0 To UBound(Bkpt)

 Proj.CPU.Breakpoint(i) = Proj.P.Code_L2O(Bkpt(i)) '+1 for
AFTER the line, -1 for ZERO based
 Next
End Sub

'-----------------------------'
' Private Sub LErr_DblClick() '
'-----------------------------'
Private Sub LErr_DblClick()
 'Check if anything
 If LErr.ListIndex < 0 Then Exit Sub
 'Show selected warning/error
 Call DisplayError(LErr.ListIndex, True)
End Sub

'----------------------------'
' Private Sub RTB_OnChange() '
'----------------------------'
Private Sub RTB_OnChange()
 Proj.P.CompileNeeded = True
End Sub

'--'
' Private Sub RTB_OnKeyPress(Key As Integer) '
'--'
Private Sub RTB_OnKeyPress(Key As Integer)
 If RTB.ReadOnly Then Call MsgBox("Please Reset the project
before editing the code.", vbExclamation + vbOKOnly)
End Sub

'----------------------------------'
' Private Sub RTB_OnStatusChange() '
'----------------------------------'
Private Sub RTB_OnStatusChange()
 SB.Panels(1).Text = "Line " + CStr(RTB.CaretY) + " of " +
CStr(RTB.Lines.Count)
 SB.Panels(2).Text = IIf(RTB.Modified, "Modified", "")
 SB.Panels(3).Text = IIf(RTB.InsertMode, "Insert", "Overwrite")
 If errLine <> -1 Or wngLine <> -1 Then
 errLine = -1
 wngLine = -1
 Call RTB.MarksSetVisible(0, False)
 InvalidateRTB
 End If
End Sub

'---'
' Private Sub RTB_OnSpecialLineColors(ByVal '
' Line As Long, Special As Boolean, FG As '
' stdole.OLE_COLOR, BG As stdole.OLE_COLOR) '
'---'
Private Sub RTB_OnSpecialLineColors(ByVal Line As Long, Special As
Boolean, FG As stdole.OLE_COLOR, BG As stdole.OLE_COLOR)
 Dim i As Integer
 'Error
 If errLine = Line Then
 Special = True
 FG = vbWhite
 BG = &HFF
 End If
 'Warning
 If wngLine = Line Then
 Special = True
 FG = vbWhite
 BG = &HFF
 End If
 'Breakpoint
 For i = 0 To UBound(Bkpt)
 If Bkpt(i) = Line Then
 Special = True
 FG = vbWhite
 BG = &H80
 End If
 Next
 'Instruction Pointer
 If Proj.Running And (Proj.Paused Or Not fiMain.MISpdMax.Checked)
Then
 i = Proj.CPU.IP - IIf(Proj.CPU.Fetch And (Proj.CPU.CIB = ""),
0, 1)
 If i <= UBound(Proj.P.Code_O2L) Then
 If Line = Proj.P.Code_O2L(i) + 1 Then
 Special = True
 FG = vbBlack
 BG = &HFFFF00
 Call RTB.MarksSetLine(0, Line)
 Call RTB.MarksSetImageIndex(0, 0)
 Call RTB.MarksSetVisible(0, True)
 End If

CLab – Implementation Listings

 116

 End If
 End If
End Sub

'--'
' Private Sub RTB_OnGutterClick(ByVal X As '
' Long, ByVal Y As Long, ByVal Line As Long) '
'--'
Private Sub RTB_OnGutterClick(ByVal x As Long, ByVal y As Long, ByVal
Line As Long)
 'Check if we have a breakpoint for Line
 Dim i As Integer, h As Boolean
 For i = 0 To UBound(Bkpt)
 If Bkpt(i) = Line Then GoTo fnd
 Next
 'Add this line to breakpoints
 ReDim Preserve Bkpt(-1 To UBound(Bkpt) + 1)
 Bkpt(UBound(Bkpt)) = Line
 Call RTB.MarksAdd(Line, 2, True)
 Call RTB.InvalidateLine(Line)
 TransferBreakpoints
 Exit Sub
fnd:
 'Remove this line from breakpoints
 Dim A As Integer
 For A = i + 1 To UBound(Bkpt)
 Bkpt(A - 1) = Bkpt(A)
 Next
 ReDim Preserve Bkpt(-1 To UBound(Bkpt) - 1)
 For i = 0 To RTB.MarksCount - 1
 If RTB.MarksGetLine(i) = Line And RTB.MarksGetImageIndex(i) = 2
Then
 RTB.MarksDelete (i)
 Call RTB.InvalidateLine(Line)
 TransferBreakpoints
 Exit Sub
 End If
 Next
End Sub

'--'
' Private Function ConfirmCompile(Optional Ask '
' As Boolean = False) As Boolean '
' '
' Checks if the program needs to be compiled, '
' and does so if necessary. Warns the user if '
' Ask is set to true '
'--'
Private Function ConfirmCompile(Optional Ask As Boolean = False) As
Boolean
 Dim b As Integer
 'Check if compile needed at all
 If Not Proj.P.CompileNeeded Then
 ConfirmCompile = True
 Exit Function
 End If
 'Confirm
 If Ask Then
 If MsgBox("You have modified the code, and so you have to compile
it again before continuing. Do you want to compile and load your
code?", vbOKCancel + vbQuestion) = vbCancel Then
 ConfirmCompile = False
 Exit Function
 End If
 End If

 'Try to compile
 PrgCompile
 'Check error messages
 If UBound(Proj.P.ErrL.sError) = -1 Then
 'No errors
 PrgLoad
 Else
 'Go to line and highlight it
 Call DisplayError(0, False)
 ConfirmCompile = False
 Exit Function
 End If
 'Continue
 ConfirmCompile = True
End Function

'------------------------------'
' Private Sub MIImport_Click() '
'------------------------------'
Private Sub MIImport_Click()
 'Get file name
 Dim s As String: s = ""

 If Not GetFilename(False, s, "", "Assembly language
files|*.asm|All files|*.*", "asm", "Import assembly language
program") Then Exit Sub
 'Load as RTF if ext is rtf, text otherwise
 SetPanelText "Loading file... Please wait"
 Open s For Binary As 1
 s = String(LOF(1), " ")
 Get 1, , s
 RTB.Text = s
 Close
 SetPanelText ""
 'Need to compile before running
 Proj.P.CompileNeeded = True
End Sub

'------------------------------'
' Private Sub MIExport_Click() '
'------------------------------'
Private Sub MIExport_Click()
 'Get file name
 Dim s As String: s = ""
 If Not GetFilename(True, s, "", "Assembly language
files|*.asm|All files|*.*", "asm", "Export assembly language
program") Then Exit Sub
 'Save file
 Open s For Binary As 1
 Put 1, , RTB.Text
 Close
End Sub

'---------------------------'
' Private Sub MIRun_Click() '
'---------------------------'
Private Sub MIRun_Click()
 'Set submenu according to current state
 If Proj.Running Then
 If Proj.Paused Then
 MIStart.Caption = "Continue"
 Else
 MIStart.Caption = "Pause"
 End If
 Else
 MIStart.Caption = "Start"
 End If
 MIStep.Enabled = Not Proj.Running Or Proj.Paused
End Sub

'-----------------------------'
' Private Sub MIStart_Click() '
'-----------------------------'
Public Sub MIStart_Click()
 If Proj.Halted Then
 Proj.Running = False
 Proj.Paused = False
 Proj.Halted = False
 End If
 If Proj.Running Then
 If Not ConfirmCompile Then Exit Sub
 Proj.Paused = Not Proj.Paused
 If Not Proj.Paused And fiMain.MISpdMax.Checked Then Call
RTB.MarksSetVisible(0, False)
 Else
 fiMain.ResetAll
 If Not ConfirmCompile Then Exit Sub
 TransferBreakpoints
 Proj.Running = True
 Proj.Paused = False
 End If
 RTB.ReadOnly = True
 fsCode.SetFocus
 fiMain.SetToolbarButtons
End Sub

'----------------------------'
' Private Sub MIStep_Click() '
'----------------------------'
Public Sub MIStep_Click()
 If Proj.Halted Then
 Proj.Running = False
 Proj.Paused = False
 Proj.Halted = False
 End If
 If Proj.Running Then
 If Not ConfirmCompile Then Exit Sub
 Step
 Else
 fiMain.ResetAll
 If Not ConfirmCompile Then Exit Sub

CLab – Implementation Listings

 117

 TransferBreakpoints
 Proj.Running = True
 Proj.Paused = True
 Step
 RTB.ReadOnly = True
 End If
 fiMain.UpdateAll
 fsCode.SetFocus
 fiMain.SetToolbarButtons
End Sub

'-----------------------------'
' Private Sub MIReset_Click() '
'-----------------------------'
Public Sub MIReset_Click()
 fiMain.ResetAll
 fiMain.UpdateAll
 fsCode.SetFocus
 fiMain.SetToolbarButtons
End Sub

'----------------------------------'
' Private Sub MIBreakpoint_Click() '
'----------------------------------'
Private Sub MIBreakpoint_Click()
 Call RTB_OnGutterClick(0, 0, RTB.CaretY)
End Sub

'------------------------------'
' Private Sub MISyntax_Click() '
'------------------------------'
Private Sub MISyntax_Click()
 'Try to compile
 PrgCompile
 'Check error messages
 If UBound(Proj.P.ErrL.sError) = -1 Then
 'No errors
 Call MsgBox("No errors were found in your code.", vbOKOnly +
vbInformation, "Syntax check")
 Else
 'Go to line and highlight it
 Call DisplayError(0, False)
 End If
End Sub

'---------------------------------'
' Private Sub MIDoCompile_Click() '
'---------------------------------'
Private Sub MIDoCompile_Click()
 'Try to compile
 PrgCompile

 'Check error messages
 If UBound(Proj.P.ErrL.sError) = -1 Then
 'No errors
 PrgLoad
 Call MsgBox("Program compilation successful.", vbOKOnly +
vbInformation, "Compile program")
 Else
 Call DisplayError(0, False)
 End If
End Sub

'-------------------------------'
' Private Sub MINextErr_Click() '
'-------------------------------'
Private Sub MINextErr_Click()
 If LErr.ListCount = 0 Then Exit Sub
 If LErr.ListIndex >= LErr.ListCount - 1 Then
 LErr.ListIndex = 0
 Else
 LErr.ListIndex = LErr.ListIndex + 1
 End If
 LErr_DblClick
End Sub

'-------------------------------'
' Public Sub MITick_ForFIMAIN() '
'-------------------------------'
Public Sub MITick_ForFIMAIN()
 'fiMain form needs to invoke Tick, but it has no access to
 'some important functions which are private fsCode functions.
 If Proj.Halted Then
 Proj.Running = False
 Proj.Paused = False
 Proj.Halted = False
 End If
 If Proj.Running Then
 If Not ConfirmCompile Then Exit Sub
 Tick
 Else
 fiMain.ResetAll
 If Not ConfirmCompile Then Exit Sub
 TransferBreakpoints
 Proj.Running = True
 Proj.Paused = True
 Tick
 RTB.ReadOnly = True
 End If
 fiMain.UpdateAll
 fsCode.SetFocus
 fiMain.SetToolbarButtons
End Sub

22.18. fsRegs

Option Explicit

'--'
' Public declarations in this module: '
' '
' PROCEDURES: '

' Init '
' SetNumberFormat '
' Update '
'--'

'Stores the string values for all registers displayed

CLab – Implementation Listings

 118

' on this form to track changes and highlight respectively
Private LastStr(0 To 15) As String

'--'
' Public Sub Init() '
' '
' DESCRIPTION: initialises this module. '
' '
' NOTES: Must be called *after* fhCPU.Init '
'--'
Public Sub Init()
 'Set initial values and colors
 Update
 SaveLast
 Update
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fsRegs.Hide
 End If
End Sub

'--'
' Public Sub Update() '
' '
' Updates the contents of the window to '
' reflect changes to the state of the '
' simulation. '
'--'
Public Sub Update()
 'Mode
 NRun.Visible = Not Proj.Running
 NCtl.Visible = Proj.Running
 Dim s As String
 'Values
 s = IIf(Proj.CPU.Fetch, "Fetch (", "Exec (")
 If Proj.CPU.Fetch Then
 If Proj.CPU.CIB = "" Then
 s = s + "?"
 Else
 s = s + IIf(Proj.CPU.fremMem, CStr(Proj.CPU.FREM + 1) + "+",
CStr(Proj.CPU.FREM))
 End If
 Else
 s = s + CStr(UBound(Proj.CPU.DIB) - Proj.CPU.eDP + 1)
 End If
 LFE.Caption = s + ")"
 LA.Text = Dec2Fmt16(Proj.CPU.A, Proj.NmbRep)
 LB.Text = Dec2Fmt16(Proj.CPU.R(0), Proj.NmbRep)
 LC.Text = Dec2Fmt16(Proj.CPU.R(1), Proj.NmbRep)
 LD.Text = Dec2Fmt16(Proj.CPU.R(2), Proj.NmbRep)
 LE.Text = Dec2Fmt16(Proj.CPU.R(3), Proj.NmbRep)
 LIP.Text = Dec2Fmt16(Proj.CPU.IP, Proj.NmbRep)
 LSP.Text = Dec2Fmt16(Proj.CPU.SP, Proj.NmbRep)
 LFLAGS.Text = Dec2Fmt16(Proj.CPU.FLAGS, Proj.NmbRep)
 LFZ.Caption = IIf((Proj.CPU.FLAGS And 1) > 0, "1", "0")
 LFS.Caption = IIf((Proj.CPU.FLAGS And 2) > 0, "1", "0")
 LFO.Caption = IIf((Proj.CPU.FLAGS And 4) > 0, "1", "0")
 LFC.Caption = IIf((Proj.CPU.FLAGS And 8) > 0, "1", "0")
 LFI.Caption = IIf((Proj.CPU.FLAGS And 16) > 0, "1", "0")
 LFN.Caption = IIf((Proj.CPU.FLAGS And 256) > 0, "1", "0")
 LFP.Caption = IIf((Proj.CPU.FLAGS And 512) > 0, "1", "0")

 'Colors
 LFE.ForeColor = IIf(LastStr(0) = LFE.Caption, 0, &HFF)
 LA.ForeColor = IIf(LastStr(1) = LA.Text, 0, &HFF)
 LB.ForeColor = IIf(LastStr(2) = LB.Text, 0, &HFF)
 LC.ForeColor = IIf(LastStr(3) = LC.Text, 0, &HFF)
 LD.ForeColor = IIf(LastStr(4) = LD.Text, 0, &HFF)
 LE.ForeColor = IIf(LastStr(5) = LE.Text, 0, &HFF)
 LIP.ForeColor = IIf(LastStr(6) = LIP.Text, 0, &HFF)
 LSP.ForeColor = IIf(LastStr(7) = LSP.Text, 0, &HFF)
 LFLAGS.ForeColor = IIf(LastStr(8) = LFLAGS.Text, 0, &HFF)
 LFZ.ForeColor = IIf(LastStr(9) = LFZ.Caption, 0, &HFF)
 LFS.ForeColor = IIf(LastStr(10) = LFS.Caption, 0, &HFF)
 LFO.ForeColor = IIf(LastStr(11) = LFO.Caption, 0, &HFF)
 LFC.ForeColor = IIf(LastStr(12) = LFC.Caption, 0, &HFF)

 LFP.ForeColor = IIf(LastStr(13) = LFP.Caption, 0, &HFF)
 LFN.ForeColor = IIf(LastStr(14) = LFN.Caption, 0, &HFF)
 LFI.ForeColor = IIf(LastStr(15) = LFI.Caption, 0, &HFF)

 'Remember last status
 SaveLast
End Sub

'--'
' Private Sub SaveLast() '
' '
' Saves the state of all register in order to '
' highlight them as they change. Is called by '
' Update() after getting new values for them '
'--'
Private Sub SaveLast()
 LastStr(0) = LFE.Caption
 LastStr(1) = LA.Text
 LastStr(2) = LB.Text
 LastStr(3) = LC.Text
 LastStr(4) = LD.Text
 LastStr(5) = LE.Text
 LastStr(6) = LIP.Text
 LastStr(7) = LSP.Text
 LastStr(8) = LFLAGS.Text
 LastStr(9) = LFZ.Caption
 LastStr(10) = LFS.Caption
 LastStr(11) = LFO.Caption
 LastStr(12) = LFC.Caption
 LastStr(13) = LFP.Caption
 LastStr(14) = LFN.Caption
 LastStr(15) = LFI.Caption
End Sub

Private Sub LA_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LA.Text) Then
 Proj.CPU.A = Fmt2Dec16(LA.Text)
 Call Update
 Else
 Call MsgBox("Please enter a number between -32768 and 65535,
in decimal, hexadecimal or binary. Hexadecimal numbers must be
followed by letter 'h', binary numbers - by 'b'.", vbExclamation +
vbOKOnly)
 End If
 End If
End Sub

Private Sub LB_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LB.Text) Then
 Proj.CPU.R(0) = Fmt2Dec16(LB.Text)
 Call Update
 Else
 Call MsgBox("Please enter a number between -32768 and 65535,
in decimal, hexadecimal or binary. Hexadecimal numbers must be
followed by letter 'h', binary numbers - by 'b'.", vbExclamation +
vbOKOnly)
 End If
 End If
End Sub

Private Sub LC_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LC.Text) Then
 Proj.CPU.R(1) = Fmt2Dec16(LC.Text)
 Call Update
 Else
 Call MsgBox("Please enter a number between -32768 and 65535,
in decimal, hexadecimal or binary. Hexadecimal numbers must be
followed by letter 'h', binary numbers - by 'b'.", vbExclamation +
vbOKOnly)
 End If
 End If
End Sub

Private Sub LD_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LD.Text) Then
 Proj.CPU.R(2) = Fmt2Dec16(LD.Text)
 Call Update
 Else
 Call MsgBox("Please enter a number between -32768 and 65535,
in decimal, hexadecimal or binary. Hexadecimal numbers must be
followed by letter 'h', binary numbers - by 'b'.", vbExclamation +
vbOKOnly)
 End If
 End If

CLab – Implementation Listings

 119

End Sub

Private Sub LE_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LE.Text) Then
 Proj.CPU.R(3) = Fmt2Dec16(LE.Text)
 Call Update
 Else
 Call MsgBox("Please enter a number between -32768 and 65535, in
decimal, hexadecimal or binary. Hexadecimal numbers must be followed
by letter 'h', binary numbers - by 'b'.", vbExclamation + vbOKOnly)
 End If
 End If
End Sub

Private Sub LSP_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LSP.Text) Then
 Proj.CPU.SP = Fmt2Dec16(LSP.Text)
 Call Update
 Else
 Call MsgBox("Please enter a number between -32768 and 65535, in
decimal, hexadecimal or binary. Hexadecimal numbers must be followed
by letter 'h', binary numbers - by 'b'.", vbExclamation + vbOKOnly)
 End If
 End If
End Sub

Private Sub LIP_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LIP.Text) Then
 Proj.CPU.IP = Fmt2Dec16(LIP.Text)
 Call fiMain.UpdateAll
 Else
 Call MsgBox("Please enter a number between -32768 and 65535,
in decimal, hexadecimal or binary. Hexadecimal numbers must be
followed by letter 'h', binary numbers - by 'b'.", vbExclamation +
vbOKOnly)
 End If
 End If
End Sub

Private Sub LFLAGS_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 If IsFmt16(LFLAGS.Text) Then
 Proj.CPU.FLAGS = Fmt2Dec16(LFLAGS.Text)
 Else
 Call MsgBox("Please enter a number between -32768 and 65535,
in decimal, hexadecimal or binary. Hexadecimal numbers must be
followed by letter 'h', binary numbers - by 'b'.", vbExclamation +
vbOKOnly)
 End If
 End If
End Sub

22.19. fsVars

Option Explicit

'Font to draw string grid
Private drwFont As Long
'Brush for selected variable
Private brushSel As Long

'Prevent specific events
Private BlockSelectCell As Boolean
Private BlockSetEditCell As Boolean

'--'
' Public Sub Init() '
' '
' DESCRIPTION: initialises this module. '
'--'
Public Sub Init()
 'SG font
 drwFont = CreateFont(-11, 0, 0, 0, 400, False, False, False, 1, 0,
0, 0, 0, "Courier New")
 Dim LB As LOGBRUSH
 LB.lbColor = GetSysColor(COLOR_HIGHLIGHT): LB.lbHatch = 0:
LB.lbStyle = 0
 brushSel = CreateBrushIndirect(LB)
 'Set SG options
 SG.Option(goEditing) = True
 SG.Option(goColMoving) = False
 SG.Option(goColSizing) = True
 SG.Option(goRangeSelect) = False
 SG.Option(goRowMoving) = False
 SG.Option(goRowSizing) = False
 SG.Option(goThumbTracking) = True
 'SG visual
 SG.ColCount = 2
 SG.RowCount = 20
 SG.FixedCols = 0
 SG.FixedRows = 1

 SG.Cells(0, 0) = "Variable"
 SG.Cells(1, 0) = "Value"
 SG.ColWidths(0) = 100
 SG.ColWidths(1) = 70

 BlockSelectCell = False
 BlockSetEditCell = False

 Update
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1
 fsVars.Hide
 End If
End Sub

'---------------------------'
' Private Sub Form_Resize() '
'---------------------------'
Private Sub Form_Resize()
 SG.Width = ClientW.Width - 16
 SG.Height = ClientH.Height - 16
 NRun.Width = ClientW.Width
 NRun.Height = ClientH.Height
End Sub

CLab – Implementation Listings

 120

'--'
' Public Sub Update() '
' '
' Updates the contents of the window to '
' reflect changes to the state of the '
' simulation. '
'--'
Public Sub Update()
 Dim rct As RECT
 Call GetClientRect(SG.hwnd, rct)
 Call InvalidateRect(SG.hwnd, rct, True)
 SG.RowCount = UBound(Proj.P.Vars) + 2 + IIf(UBound(Proj.P.Vars) = -
1, 1, 0)
 SG.Visible = Proj.Running
 NRun.Visible = Not Proj.Running
End Sub

'--'
' Private Sub SG_OnDrawCell(ByVal ACol As '
' Long, ByVal ARow As Long, ByVal RectFX '
' As Long, ByVal RectFY As Long, ByVal '
' RectTX As Long, ByVal RectTY As Long) '
'--'
Private Sub SG_OnDrawCell(ByVal ACol As Long, ByVal ARow As Long,
ByVal RectFX As Long, ByVal RectFY As Long, ByVal RectTX As Long,
ByVal RectTY As Long)
 Dim rct As RECT
 rct.Left = RectFX + 2
 rct.Top = RectFY + 1
 rct.Right = RectTX - 2
 rct.Bottom = RectTY - 1
 Dim st As String
 If ARow = 0 Then
 Call SelectObject(SG.hdc, GetStockObject(1)) 'LTGRAY_BRUSH
 st = SG.Cells(ACol, ARow)
 Else
 If SG.GetSelY = ARow Then
 Call SelectObject(SG.hdc, brushSel)
 Call SetTextColor(SG.hdc, GetSysColor(COLOR_HIGHLIGHTTEXT))
 Else
 Call SelectObject(SG.hdc, GetStockObject(0)) 'WHITE_BRUSH
 Call SetTextColor(SG.hdc, 0)
 End If
 st = ""
 If ACol = 0 Then
 If UBound(Proj.P.Vars) <> -1 Then st = Proj.P.Vars(ARow -
1).Name
 Else
 If UBound(Proj.P.Vars) <> -1 Then st =
Dec2Fmt16(Proj.RAM(Proj.P.Vars(ARow - 1).Addr) * CLng(256) +
Proj.RAM(Proj.P.Vars(ARow - 1).Addr + 1), Proj.NmbRep)
 End If
 End If
 Call SelectObject(SG.hdc, GetStockObject(7)) 'BLACK_PEN
 Call Rectangle(SG.hdc, RectFX - 1, RectFY - 1, RectTX + 1, RectTY +
1)
 Call SelectObject(SG.hdc, drwFont)
 Call SetBkMode(SG.hdc, TRANSPARENT)
 Call DrawText(SG.hdc, st, Len(st), rct, 0)
End Sub

'--'
' Private Sub SG_OnGetEditText(ByVal ACol As '
' Long, ByVal ARow As Long, Value As String) '
'--'
Private Sub SG_OnGetEditText(ByVal ACol As Long, ByVal ARow As Long,
Value As String)
 Value = ""
 If ACol <> 1 Then Exit Sub
 If ARow = 0 Then Exit Sub
 If UBound(Proj.P.Vars) = -1 Then Exit Sub

 Value = Dec2Fmt16(Proj.RAM(Proj.P.Vars(ARow - 1).Addr) *
CLng(256) + Proj.RAM(Proj.P.Vars(ARow - 1).Addr + 1), Proj.NmbRep)
End Sub

'---'
' Private Sub SG_OnSetEditText(ByVal ACol '
' As Long, ByVal ARow As Long, ByVal '
' Value As String) '
'---'
Private Sub SG_OnSetEditText(ByVal ACol As Long, ByVal ARow As
Long, ByVal Value As String)
 'Tests
 If BlockSetEditCell Then Exit Sub
 If SG.EditorMode Then Exit Sub
 BlockSetEditCell = True
 If ACol <> 1 Then Call MsgBox("You cannot edit this cell.",
vbOKOnly + vbInformation): BlockSetEditCell = False: Exit Sub
 If ARow = 0 Then Call MsgBox("You cannot edit this cell.",
vbOKOnly + vbInformation): BlockSetEditCell = False: Exit Sub
 If UBound(Proj.P.Vars) = -1 Then Call MsgBox("There are no
variables declared in your source code." + Chr(13) + Chr(10) +
"Use structures like 'myvar: DW 10' to declare a variable MYVAR
equal to 10.", vbOKOnly + vbInformation): BlockSetEditCell =
False: Exit Sub
 'Valid value?
 If Not IsFmt16(Value) Then
 Call MsgBox("The number you entered is not valid. The number
has to be between -32768 and 65535 (-8000h and FFFFh), and end
with nothing for denary numbers, H for hexadecimal and B for
binary.", vbOKOnly + vbInformation)
 BlockSetEditCell = False
 Exit Sub
 End If
 'Convert to string and write to memory
 Dim s As String
 s = Dec2Chr(Fmt2Dec16(Value), 2)
 Proj.RAM(Proj.P.Vars(ARow - 1).Addr) = Asc(Mid(s, 1, 1))
 Proj.RAM(Proj.P.Vars(ARow - 1).Addr + 1) = Asc(Mid(s, 2, 1))
 'Finished
 BlockSetEditCell = False
End Sub

'---'
' Private Sub SG_OnSelectCell(ByVal ACol As Long, '
' ByVal ARow As Long, CanSelect As Boolean) '
'---'
Private Sub SG_OnSelectCell(ByVal ACol As Long, ByVal ARow As
Long, CanSelect As Boolean)
 If BlockSelectCell Then Exit Sub
 Dim rct As RECT
 Call GetClientRect(SG.hwnd, rct)
 Call InvalidateRect(SG.hwnd, rct, True)
 If ACol = 0 Then
 BlockSelectCell = True
 SG.SetSelX 1
 SG.SetSelY ARow
 BlockSelectCell = False
 CanSelect = False
 End If
End Sub

'--'
' Private Sub SG_OnMouseDown(ByVal MouseButton '
' As StringGridVBProj.TxMouseButton) '
'--'
Private Sub SG_OnMouseDown(ByVal MouseButton As
StringGridVBProj.TxMouseButton)
 If MouseButton = mbRight Then PopupMenu MIOptions
End Sub

22.20. fsStack

CLab – Implementation Listings

 121

Option Explicit

'Stack base address
Private stBase As Long
'Stack length
Private stLen As Long

'Font to draw string grid
Private drwFont As Long
'Brush to highlight SP
Private drwSPBrush As Long

'--'
' Public Sub Init() '
' '
' DESCRIPTION: initialises this module. '
'--'
Public Sub Init()
 'SG font
 drwFont = CreateFont(-11, 0, 0, 0, 400, False, False, False, 1, 0,
0, 0, 0, "Courier New")
 Dim LB As LOGBRUSH
 LB.lbColor = &HC0C0FF: LB.lbHatch = 0: LB.lbStyle = 0
 drwSPBrush = CreateBrushIndirect(LB)
 'SG visual
 SG.FixedCols = 0
 SG.FixedRows = 1
 SG.ColCount = 2
 SG.RowCount = 2
 SG.Cells(0, 0) = "Addr"
 SG.Cells(1, 0) = "Value"
 'Column widths
 'I don't know whether this is a VB bug, a Windows bug
 'or just me, but if we don't call SelectObject before
 'every call using SG.hdc then we lose the font.
 Dim sz As Size
 Call SelectObject(SG.hdc, drwFont)
 Call GetTextExtentPoint32(SG.hdc, SG.Cells(0, 0), Len(SG.Cells(0,
0)), sz)
 SG.ColWidths(0) = sz.cx + 4 + 10
 Call SelectObject(SG.hdc, drwFont)
 Call GetTextExtentPoint32(SG.hdc, SG.Cells(1, 0), Len(SG.Cells(1,
0)), sz)
 SG.ColWidths(1) = sz.cx + 4 + 10
 SG.DefaultRowHeight = sz.cy + 2
 'Set SG options
 SG.Option(goEditing) = False
 SG.Option(goColMoving) = False
 SG.Option(goColSizing) = True
 SG.Option(goRangeSelect) = False
 SG.Option(goRowMoving) = False
 SG.Option(goRowSizing) = False
 SG.Option(goThumbTracking) = True
 'Set stack parameters
 stBase = 24576
 stLen = 2048
 SG.RowCount = stLen \ 2 + 1
End Sub

'--'
' Private Sub Form_Unload(Cancel As Integer) '
' '
' DESCRIPTION: Event handler for Form_Unload '
' unloads the form if the application is '
' really shutting down, and just hides the '
' form in case the user requested to close '
' it. '
'--'
Private Sub Form_Unload(Cancel As Integer)
 If Not Appp.Terminating Then
 Cancel = 1

 fsStack.Hide
 End If
End Sub

'---------------------------'
' Private Sub Form_Resize() '
'---------------------------'
Private Sub Form_Resize()
 SG.Width = ClientW.Width - 240
 SG.Height = ClientH.Height - 240
 NRun.Width = ClientW.Width
 NRun.Height = ClientH.Height
End Sub

'--'
' Public Sub Update() '
' '
' Updates the contents of the window to '
' reflect changes to the state of the '
' simulation. '
'--'
Public Sub Update()
 Dim rct As RECT
 Call GetClientRect(SG.hwnd, rct)
 Call InvalidateRect(SG.hwnd, rct, True)
 SG.Visible = Proj.Running
 NRun.Visible = Not Proj.Running
End Sub

'--'
' Private Sub SG_OnDrawCell(ByVal ACol As '
' Long, ByVal ARow As Long, ByVal RectFX '
' As Long, ByVal RectFY As Long, ByVal '
' RectTX As Long, ByVal RectTY As Long) '
'--'
Private Sub SG_OnDrawCell(ByVal ACol As Long, ByVal ARow As Long,
ByVal RectFX As Long, ByVal RectFY As Long, ByVal RectTX As Long,
ByVal RectTY As Long)
 Dim rct As RECT
 rct.Left = RectFX + 2
 rct.Top = RectFY + 1
 rct.Right = RectTX - 2
 rct.Bottom = RectTY - 1
 Dim st As String
 If ARow = 0 Then
 Call SelectObject(SG.hdc, GetStockObject(1)) 'LTGRAY_BRUSH
 st = SG.Cells(ACol, ARow)
 Else
 If Proj.CPU.SP = stBase + (ARow - 1) * 2 Then
 Call SelectObject(SG.hdc, drwSPBrush)
 Else
 Call SelectObject(SG.hdc, GetStockObject(0)) 'WHITE_BRUSH
 End If
 If ACol = 0 Then
 st = Dec2Hex(stBase + (ARow - 1) * 2, 4)
 Else
 st = Dec2Fmt16(Proj.RAM(stBase + (ARow - 1) * 2) * 256 +
Proj.RAM(stBase + (ARow - 1) * 2 + 1), Proj.NmbRep)
 End If
 End If
 Call SelectObject(SG.hdc, GetStockObject(7)) 'BLACK_PEN
 Call Rectangle(SG.hdc, RectFX - 1, RectFY - 1, RectTX + 1,
RectTY + 1)
 Call SelectObject(SG.hdc, drwFont)
 Call SetBkMode(SG.hdc, TRANSPARENT)
 Call DrawText(SG.hdc, st, Len(st), rct, 0)
End Sub

'--'
' Private Sub SG_OnMouseDown(ByVal MouseButton '
' As StringGridVBProj.TxMouseButton) '

CLab – Implementation Listings

 122

'--'
Private Sub SG_OnMouseDown(ByVal MouseButton As
StringGridVBProj.TxMouseButton)

 If MouseButton = mbRight Then PopupMenu MIOptions
End Sub

Testing

CLab – Testing Assembly language testing

 124

23. Assembly language testing

In this section I will first test different types of operands using the ld instruction. I
will then test the most frequently used opcodes.

Note that this section provides no visual proof that tests were passed – mainly because
there are too many tests, and supporting each one with a picture would be very
excessive. I will support my tests in the other two sections, which will at the same
time partly support these tests too.

23.1. Operand testing

No. Instruction Expected result Passed
1 ld a, 10 10 loaded into accumulator OK
2 ld a, 10b 2 loaded into accumulator OK
3 ld a, 0FFFFh 65535 loaded into accumulator OK
4 ld a, -8000h -32768 loaded into accumulator OK
5 ld a, 66000 Error message – overflow in 16-bit constant OK
6 ld a, 0FF0 Error message – incorrect syntax OK
7 ld b, 0F00h 3840 loaded into B register OK
8 ld a, b Contents of B copied into accumulator OK
9 ld a, myvar Contents of myvar loaded into accumulator OK
10 ld myvar, a Accumulator stored in myvar OK
11 ld myvar, 10 Error message – cannot load a constant into a variable OK
12 ld c, myvar ;myvar is not declared Error message – myvar is not declared OK

23.2. Opcode testing

No. Instruction Expected result Passed
13 add a, 10 10 added to accumulator; result stored in accumulator OK
14 sub b, a A subtracted from B; result stored in B OK
15 cmp a, b ; a = b Zero flag set to true OK
16 mul a, b A multiplied by B; result stored in A OK
17 mul b, c Error message – incompatible operands OK
18 div a, myvar A divided by myvar; result stored in A OK
19 neg c Sign of C changed OK
20 not c All bits in C changed OK
21 and a, myvar Bitwise And performed on A and myvar; result in A OK
22 or b, a Bitwise Or on B and A; result stored in B OK
23 xor b, a Bitwise Xor performed on B and A; result stored in B OK
24 xor a,a Accumulator set to zero OK
25 lshr b, 5 Bits in B shifted by 5 bits to the right OK
26 lshl a, 3 Bits in A shifted by 3 bits to the left OK
27 ashr a, 5 Bits in A shifted by 5 bits to the right; sign preserved OK
28 ashl b, a Bits in B shifted by A bits to the right; sign preserved OK
29 ashl b, 20 Error message – number of shifts exceeds 15 OK
30 jg lbl ; after comparing 2 and 5 Jump not performed OK
31 jg lbl ; after comparing 5 and 2 Jump performed OK
32 jl lbl ; after comparing 2 and 5 Jump performed OK
33 jmp mylabel Jump to mylabel OK

CLab – Testing Assembly language testing

 125

34 call myproc Myproc called; previous address pushed on stack OK
35 ret ; after a call Jump to the instruction following the call opcode OK
36 halt Program execution stopped OK

24. Window testing

24.1. Code window

No. Test Expected result Passed Reference
37 Write a program Syntax highlighting; editing facilities OK 24.1.1
38 Step through a program Current line highlighted OK 24.1.2
39 Set a breakpoint Breakpoint line highlighted; execution should pause OK 24.1.3
40 Run a program with

many errors
Error listed at the bottom; The first error displayed
in an error message.

OK 24.1.4

 24.1.1 24.1.2

 24.1.3 24.1.4

24.2. CPU window

No. Test Expected result Passed Reference
41 Run a program Register contents should be displayed, including

Current Instruction Register and MAR/MDR
OK 24.2.1

42 Switch complexity mode Window layout should change – to a simple one in
this case

OK 24.2.2

CLab – Testing Window testing

 126

24.2.1

24.2.2

24.3. RAM window

No. Test Expected result Passed Reference
43 Run a program Program code should be displayed and highlighted

with yellow. Current instruction should be
highlighted with blue

OK 24.3.1

44 Edit a cell Memory byte must be updated; the new byte must
be highlighted with red

OK 24.3.2

 24.3.1 24.3.2

CLab – Testing Window testing

 127

24.4. Registers window

No. Test Expected result Passed Reference
45 Run a program Register values should be displayed. Registers that

change must be highlighted with red.
OK 24.4.1

46 Edit a register Register value must be updated OK N/A
47 Change number format Values must be shown in the new number format

(decimal unsigned in this case)
OK 24.4.2

 24.4.1 24.4.2

24.5. Variables window

No. Test Expected result Passed Reference
48 Run a program All variables declared in the program must be

listed in the grid.
OK 24.5.1

49 Edit a variable Variable value must be updated OK N/A

 24.5.1

24.6. Stack window

No. Test Expected result Passed Reference
50 Push a value onto stack The value should be displayed in the grid; stack

pointer (red) must move down
OK 24.6.1

51 Return from a call Stack pointer must move up OK N/A

 24.6.1

CLab – Testing Window testing

 128

25. Overall testing

25.1. Print keys program

This program installs a keyboard interrupt service procedure which prints every key
that the user presses on the screen. The source code is as follows:

 cli

 ;Install interrupt handler
 ld a,offset(isp_kbd)
 ld [0FF02h],a
 ;Initialise screen
 in b,52h ;get video memory offset
 out 50h,2 ;color text mode
 out 54h,0 ;manual refresh

 ;Variables
 ld d,0 ;number of chars read
 ld e,0 ;exit flag - nonzero to terminate

 sti

 ;Main loop
lp: xor a,a
 cmp e,a ;test exit flag
 jz lp ;continue if zero

 ;Terminate program
 halt

;-----------------------------------;
;--- ISP for keyboard interrupts ---;
;-----------------------------------;
isp_kbd:
 push a
 push c

 ;Get pressed key code
 in c,60h
 ;Check if it is any of special keys
 ld a,c
 cmp a,51
 jz key_exit ;these are after
 cmp a,50 ;this procedure to
 jz key_cls ;make this clearer
continue:
 ;Output key to screen
 ld c,[c*1+offset(kbd_xlat)] ;get key symbol
 lshr c,8 ;remove second symbol - have read a word
 ld a,c
 ashl a,8 ;char
 add a,0F0h ;color
 ld c,a
 ld [b+d*2],c ;print char
 out 54h,2 ;refresh screen
 inc d ;increment printed num

 ;This is the end
exit_isp_kbd:
 pop c
 pop a
 iret

key_exit:
 ld e,1
 jmp exit_isp_kbd
key_cls:
 ;out FUNCTION NOT SUPPORTED YET BY VIDEOCARD
 jmp continue

CLab – Testing Window testing

 129

;------------------------------;
;--- Keyboard key names map ---;
;------------------------------;
kbd_xlat:
 ds "ABCDEFGHIJKLMNOPQRSTUVWXYZ.e_=0123456789,/*-+lrudcst"

The program is started, and the input is a sequence of keys pressed to type, “testing
keyboard and screen.”. The program worked fine, and the ouput was:

25.2. Factorial program

This is an assembly language version of the following high-level language code:

Result = Factorial(Number)
END

Sub Factorial(n)
 if n=1 then return 1 and exit sub
 Factorial = Factorial(n-1)*n
Exit Sub

This is a rather ineffective recursive implementation of the algorithm, but it helps to
show why stack is needed for recursive procedures. It is also a good test of how well
stack works. This is the code:

 ;Run Factorial with parameter Number
 ld a,Number
 call Factorial
 st a,Result
 halt

CLab – Testing Window testing

 130

Factorial:
 ;Check if we need to exit
 cmp a,1
 jz Factorial_done
 ;We need to preserve A - otherwise recursion
 ; will modify it incorrectly
 push a
 ;Call Factorial(a-1)
 dec a
 call Factorial
 ;Get old parameter into b
 pop b
 ;Multiply the two numbers and return the result
 mul a,b

Factorial_done:
 ret

Number: dw 5
Result: dw ?

If the Number variable is set to 5, the output is 120, as expected (picture 25.2.1). If
Number is 8, Result becomes 40320 (picture 25.2.2).

 25.2.1 25.2.2

Maintenance

CLab – Maintenance Organisation and conventions

 132

26. Introduction

This section describes the way the program functions in order to allow any
programmer to correct minor bugs, or make modifications to the program.

It is important to understand that a lot was written about the way the system functions
in the Design part. In this section, I will assume that the reader has the knowledge of
the terms and algorithms described in that part.

27. Organisation and conventions

27.1. Modules
The program is composed of several modules, each of which has a specific function.
There are two kinds of modules – procedural (*.bas) and form (*.frm). Procedural
module names start with a “p”, so in general procedural modules are named p*.bas.
Form modules are subdivided into four categories – hardware modules (fh*.frm),
device modules (fd*.frm), interface modules (fi*.frm) and system modules (fs*.frm).
The functions of these modules are as follows:

• Procedural – contain procedures, functions, types and variables related to a

particular process rather than to a form.
• Hardware – contain code related to a particular piece of computer hardware.

These modules, unlike device modules, provide user with a way to view
component’s operation and edit its contents if any. Operation of this hardware is
simulated in procedural modules.

• Device – each such module describes interface as well as operation of a device.
Device modules exist for all external devices (i.e. all devices which communicate
with processes through input/output ports).

• Interface – modules which simulate peripherals such as keyboard or screen. These
devices are those that a user sees when sitting at a PC.

• System – these provide development windows such as code development window,
register & variables contents windows etc. These windows could be thought of as
an IDE (Integrated Development Environment).

Below is a list of all modules with a short description:

Procedural
• pGlobals – defines application entry point, declares two global variables – Proj

and Appp (discussed later), defines window procedure wrapper.
• pWinAPI – imports Windows API functions.
• pUtils – implements a set of general functions not available in VB, such as

conversion between different number representations etc.
• pCompile – contains local variables and procedures required to compile a program

into machine code.

CLab – Maintenance Organisation and conventions

 133

• pExec – contains local variables and code required to execute machine code.
Exports functions to perform one clock tick, execute one machine instruction etc.

• pIO – provides general functions for interfacing device modules, such as
PortWrite, for simple operations with multiple external devices.

Hardware
• fhCPU – code associated with CPU window and a little bit with CPU itself.
• fhCU – code associated with control unit interface window.
• fhRAM – code associated with RAM interface window.

Device
• fdKeyboard – code that determines the way keyboard controller works, plus

keyboard controller user interface.
• fdSpeaker – code that determines the way speaker controller works, plus speaker

controller user interface.
• fdVideo – code that determines the way video controller works, plus video

controller user interface.

Interface
• fiSplash – the splash screen window, displayed at startup while the system is

loading.
• fiMain – main window at the top of the screen.
• fiComp – computer window which contains a screen, a keyboard, a speaker and

buttons to start/stop program execution.
• fiKeyboard – detachable keyboard.
• fiDisplay – detachable and scalable display.
• fiSpeaker – detachable speaker.

System
• fsCode – module providing code design and debug environment, with the primary

feature of code editing.
• fsRegs – displays and allows modification of internal CPU registers.
• fsVars – displays and allows modification of variables declared in the code.
• fsStack – displays stack contents with stack pointer.

27.2. Visibility and naming conventions
In VB it is impossible to specify different visibility for the same declaration as viewed
from different modules. If something is public then is will be visible in all other
modules, regardless of whether they want to see it. Form modules are a special case
because public procedures and variables need a qualifier (module name), but will be
visible in all modules anyway, and neither public types nor arrays are allowed as
public members of form modules. Therefore, I tried to minimize the number of public
declarations by trying to group code in such a way that some declarations are not
required outside the module. Also some naming conventions are adopted to increase
code readability.

CLab – Maintenance Organisation and conventions

 134

Procedures and functions
Procedures and functions are always declared with an explicit visibility modifier to
make the code easier to understand. All procedures and functions in pUtils and
pWinAPI are public. Otherwise they are only public if they provide some service
required globally, such as the public Tick function in the pExec module. All event
handlers are private because that’s a VB convention. The only naming convention
used is for initialisation procedure for public modules. It is prefixed with cmp for
pCompile, exe for pExec and io for pIO.

Variables
All global variables are organised into two structures – Proj and Appp, discussed
below. No other global variables should be declared without a good reason, and if
possible such variables should be organised into global structures like Proj and Appp.
No naming convention is required as global variables are already grouped into
structures, and all other variables are private and thus easier to manage.

Constants
All constants in this system are local. Some of them are prefixed to group them, but
no global naming convention is used.

Types
It is quite annoying that one has to declare all structured types separately in VB. So if
I want to create substructures inside a structure I need to declare a separate type and
name it. To simplify understanding all such “hidden but actually visible” types will be
prefixed with Tp. The Proj and Appp types themselves are also considered “hidden”
because the only reason they are delcared is to declare one single variable of the type.
Some types which are part of the Proj structure will be declared as public because
they will be used for local variables in some modules. It seems logical to me to “hide”
them as well by prefixing them with Tp. All other types will be prefixed with T and
declared in the pGlobals module.

CLab – Maintenance Global data structures

 135

28. Global data structures

There are only two global data structures – Proj and Appp. Proj stores stores all data
associated with the current project and simulation state, whereas Appp is for data that
relates to some housekeeping tasks, e.g. store a flag to indicate that application needs
to terminate.

Note that although a lot of structures are declared in different modules, structures will
not be discussed at all in the Modules section below.

28.1. Proj structure
Proj is a big structure, containing a lot of substructures. This structure is declared in
pGlobals. Its type is called TpProj, it is declared as local structure type in pGlobals.
Below is a list of all members with their types and a short description.

Project related

• Modified: Boolean – true if project has been modified and needs to be saved.
• Complexity: Integer – global complexity setting. 0 for GCSE complexity, 1 for

A-level, 2 for full complexity. 0 by default.
• NmbRep: Integer – global number representation setting. 0 for hexadecimal, 1

for binary, 2 for decimal unsigned, 3 for decimal signed. 0 by default.

Program related

• P: TpPrg – stores program written by the user, compiled program and some
additional information related to compilation. See below for more details.

Execution related

• Running: Boolean – true if simulation is on.
• Paused: Boolean – true if simulation has been paused. Should not be true if

Running is not true.
• Halted: Boolean – true if simulation has been halted. Running will be false, but

windows will still display all data. Otherwise windows would say that user has
to start the program before using them.

• TickCount: Long – number of clock ticks executed since last reset.
• CPU: TpCPU – holds CPU simulation state, such as register values etc. See

below for more details.
• RAM: Array Of Byte – holds the contents of RAM.
• Video: TpVideo – holds data about video card, such as current mode, palette

memory, etc. See below for more details.

28.1.1. TpPrg substructure
This structure is declared in pCompile as a global structure. See algorithms below to
understand the meaning of some members. Some members are declared as structured
types – see below for description. This structure has the following members:

• AsmLine: Array Of String – holds current program in assembly.

CLab – Maintenance Global data structures

 136

• TknLine: Array Of TpTokenLine – holds tokenized program.
• Code: String – holds assembled program.
• Code_O2L: Array Of Integer – holds values to convert offset in Code to a

specific line in source code.
• Code_L2O: Array Of Integer – holds values to convert a specific line in source

code to an offset in Code.

• Ref: Array of TpRef – holds a list of all references with their addresses and
code line at which they are declared.

• Backpatch: Array of TpBackpatch – holds all requests for backpatch produced
during second compilation pass.

• Vars: Array of TpVars – holds a list of all variables declared in the code with
their offsets in the memory and line where they were declared.

• ErrL: TpErrLog – a structure to hold all error and warning messages produced

during compilation.
• CompileNeeded: Boolean – true if user changed the source code and the

program needs to be compiled again.

28.1.2. TpCPU substructure
This structure holds CPU simulation state, such as register values etc. It contains the
following elements:

General-purpose registers

• A: Long – the accumulator
• R: Array (0..3) of Long – general-purpose registers stored in such a way that B

is R(0), C is R(1) etc.

Special-purpose registers

• IP: Long – instruction pointer – points to next instruction to be executed.
• SP: Long – stack pointer – points to next free stack element.
• FLAGS: Long – flags register.

Internal registers

• MAR: Long – Memory Address Register.
• MDR: Long – Memory Data Register.
• CIB: String – Current Instruction Buffer. Holds fetched instruction, each

character in the string representing one fetched byte.
• DIB: Array of TpDI – Decoded Instruction Buffer. Holds decoded

microprogram. See below for more detail.
• Fetch: Boolean – Indicates whether the CPU is fetching or executing an

instruction.
• FREM: Integer – Indicates how many more bytes there are to fetch.
• fremMem: Boolean – This register is invisible to the user, and is only here to

indicate that a memory addressing should be fetched too, thus adding another
2-4 bytes to fetch. To read more about this flag, see (Fetch process) below.

• IS: Long – Interrupt Status register.

CLab – Maintenance Global data structures

 137

Execution state

• eSelectedReg: Integer – indicates the number of general-purpose register
selected by the Control Unit for a read/write operation. Can be 0 to 5,
respectively, for the following registers: b, c, d, e, sp, ip.

• eIDB: Long – value held on the Internal Data Bus. Volatile between different
clock cycles.

• eIAB: Long – value held on the Internal Address Bus. Volatile between
different clock cycles.

• eDP: Integer – Decoded Instruction Pointer. Points to the next microinstruction
to be executed by the Control Unit in the Decoded Instruction Buffer.

• eEDB: Long – value on the External Data Bus (a.k.a. Data Bus). Volatile
between different clock cycles.

• eEAB: Long – value on the External Address Bus (a.k.a. Address Bus).
Volatile between different clock cycles.

• Breakpoint: Array of Long – array holding values of IP register, encountering
which the execution process should stop and hand over control to the
Integrated Development Environment. Has nothing to do with CPU
simulation.

28.1.3. TpDI
This structure represents a single decoded microinstruction. To read more about how
this structure is used, please refer to (Decode process) and (Execute process).

• Sig1: Long – low-order word of control signals
• Sig2: Long – high-order word of control signals
• nToIDB: Long – data to be put on IDB
• nAluOpNum: Integer – ALU operation number
• nJmpCond: Integer – conditional jump number
• nAdrMul: Integer – address multiplier for indexed addressing
• nAluSh: Integer – ALU shift count for shift operations
• nIntIS: Integer - unused

28.1.4. TpVideo substructure
This structure holds data about video card, such as current mode, palette memory, etc.
It consists of the following elements:

• Mode: Integer – mode number
• autoUpdate: Boolean – indicates whether screens are updated automatically by

CLab or manually by the user.

• mdResX: Integer – horizontal screen resolution for current mode.
• mdResY: Integer – vertical screen resolution for current mode.
• mdType: Integer – mode type – 0 for text, 1 for direct graphics, 2 for paletted

graphics.

CLab – Maintenance Global data structures

 138

• mdColors: Integer – color resolution for current mode – 0 for monochrome, 1
for 16 colors, 2 for 256, 3 for 65536 and 4 for 16777216.

• mdFntX: Integer – width of one character in screen pixels.
• mdFntY: Integer – height of one character in screen pixels.

• MemOff: Long – offset to video memory in RAM.
• PalMem: Array (0..255) of Long – palette memory
• vDC: VirtualDC – a “bitmap” in memory where all drawing occurs and which is

then drawn on simulated screens. VirtualDC is a class written by an unknown
author, with slight modifications.

28.1.5. TpToken
For more information about how this structure is used please refer to (Compile
process) section.

• Text: String – string from source code containing the token, e.g. “AND”.
• Type: Integer – token type, one of the tk constants, listed below.

28.1.6. Token Type constants
• tkUnknown = -1 – used during tokenization
• tkLabel = 0 – token is a label declaration
• tkVarDecl = 3 – token is a variable declaration
• tkVarInit = 4 – token is a variable initialisation
• tkOpcode = 5 – token is an opcode
• tkOperand = 6 – token is an operand

28.1.7. TpTokenLine
For more information about how this structure is used please refer to (Compile
process) section.

• Token: Array of TpToken – all tokens which are located on this line.
• CodeLine: Integer – line number in the original code where this line came

from.
• CodeOffset: Integer – address of whatever code is produced by this token line.

28.1.8. TpRef
For more information about how this structure is used please refer to (Compile
process) section.

• Name: String – label/variable name.
• Addr: Long – address that the reference points to.
• CodeLine: Integer – line number in original code where this reference was

declared.

28.1.9. TpBackpatch
For more information about how this structure is used please refer to (Compile
process) section.

CLab – Maintenance Global data structures

 139

• Name: String – name of label/variable referred to.
• Addr: Long – where to write the offset of requested label/variable
• IsDW: Boolean – unused
• RelTo: Long – unused
• CodeLine: Integer – line number in original code where this reference was

requested.

28.1.10. TpVars
For more information about how this structure is used please refer to (Compile
process) section.

• Name: String – variable/label name
• Addr: Long – variable/label address

28.1.11. TpErrLog
For more information about how this structure is used please refer to (Compile
process) section.

• sError: Array of String – error message
• lError: Array of Integer – number of line producing error
• nError: Array of String – error number
• sWarning: Array of String – warning message
• lWarning: Array of Integer – number of line producing warning
• nWarning: Array of String – warning number

CLab – Maintenance Processes

 140

29. Processes

This section describes core processes in detail, looking at what happens at each stage
and why it happens. This section does not look at helper functions used in the
processes – those will be discussed later in (Main functions and procedures).

29.1. Startup
Application entry point is defined in the pGlobals module. The function is called Main,
it returns no value and has no parameters. Below is a list of actions that CLab does
when it starts up.

1. Set Running flag, get windows version and initialise XP controls if necessary.
2. Load and display splash screen.
3. Load all forms that CLab contains; this takes most of the startup time.
4. Initialise Proj structure.
5. Initialise all modules which require initialisation.
6. Show main form and computer form.
7. Hide and destroy splash screen.

According to VB6 help, the application will keep running after Main returns for as
long as at least one form is loaded. So we do not need the message loop; VB does it
all for us. Please refer to the next section to read about shutting down process.

29.2. Shutdown
To shutdown, CLab unloads all forms. This causes the message loop to stop, and the
application terminates. User interface is designed in such a way that the user can only
close the main window to shut down the application. Closing any other window
simply causes that window to be hidden.

Visual Basic’s End statement is supposed to terminate the program by unloading all
forms. But apparently it does something else, because End causes CLab (and VB too)
to crash, whereas manually unloading all forms in a loop works fine. Therefore, a loop
is used instead of End.

When the user closes the main window, Terminating flag will be set to True, all
forms will be asked about shutting down, and if they all agree then they are unloaded.
This time forms will be unloaded (as opposed to being hidden) because of the
Terminating flag.

29.3. Assembly
Assembling a program requires five stages, three of which are pure assembling, one –
preparation and one – postprocessing.

Preparation
Code is copied into the Proj structure, and the structure is prepared for assembly.

CLab – Maintenance Processes

 141

Pass 1
During this pass the program is tokenized (i.e. split into tokens). First of all, the
source code is cleaned by removing all comments, ensuring all sequences of tabs and
spaces are replaced with single spaces, and then trimming leading and trailing spaces,
if any.

Next, the program is split into tokens in the following way. For every non-empty line
of source code a token line is created. The program loops through the characters of the
line, accumulating them in a special variable. Whenever it encounters a space, it saves
whatever it has accumulated as a token in the token line and starts accumulating next
token.

Having tokenized the whole program, CLab tries to identify token types. At first it
identifies label tokens (if there is a semicolon at the end then it is a label) and vardecl
tokens (if token is DB, DW or DS). Everything else is identified as unknown for now.
Next CLab analyses token positions to further identify them. This time it ignores all
label tokens. If the first token is unknown, then it is identified as opcode, otherwise it
remains as it is. Now all unknown tokens after an opcode token are identified as
operands and all unknown tokens after a vardecl token are identified as varinit
tokens.

The next stage in this pass is to analyse all token patterns and see if they are valid.
Some patterns may be corrected; others may not. First of all, all label tokens are
placed in their own token lines so that there is only one label per token line and
nothing else. Next, CLab checks if there is a vardecl token without a varinit token
after it. If there is, it issues a warning and adds an unitialised varinit. Having done
this, the algorithm is ready to check token patterns. There are only a few token
patterns that are valid at this stage. They are:

label
vardecl varinit
opcode
opcode operand
opcode operand operand

If a given token line does not follow any of these patterns at this stage, an error
message is issued, and assembly process is stopped.

The final stage of this pass is to prepare references to variables in such a way as to
simplify compilation. Whenever the user wants to use memory addressing, he can
either write the address of the variable or variable name, which will be replaced with
the address by the compiler. The following notations are equivalent: [50h] and var,
given that variable var is stored at address 50h. There are several addressing levels,
which are listed below:

 Pointer Dereference Double dereference
Specified by address 50h [50h] [[50h]]

Specified by name offset(var) var [var]

CLab – Maintenance Processes

 142

There is an obvious mismatch in formats – writing a variable name dereferences its
address automatically, whereas writing memory address does not. Therefore, it is
impossible to replace variable name by its address directly. The offset() syntax
makes things even worse. At the end of first assembly pass the program “shifts” all
addressings specified by variable name in the following way. If it encounters the
structure offset(X), it replaces it with the structure X. If it encounters something that
must be a reference, it checks whether it is a number or a variable name. If the latter is
true then it encloses the variable name with []. It is easy to see that now the table
shown above will look like this:

 Pointer Dereference Double dereference
Specified by address 50h [50h] [[50h]]

Specified by name var [var] [[var]]

Now all variable names can simply be replaced by their addresses. Note that the
reason for all this is to simplify assembly language syntax – it would not be nice if
users had to write ld a,[var] instead of ld a,var.

Pass 2
This pass generates machine code for the tokenized program. It loops through all
token lines, generating code for every line and adding it to the Proj.P.Code string. In
this way the current address (the address of the instruction being compiled) will be the
length of Proj.P.Code string. Below is a description of what the algorithm does for
every token line.

First, the algorithm checks if the first token is a label. In that case the algorithm will
check if the variable name is valid (and issue an error if it isn’t). Then it will add the
label to the reference list (Proj.P.Ref), storing reference name, address and source
code line.

Next the algorithm starts to actually convert source code into machine codes. To
reduce the amount of work, all similar instructions are assembled in loops. There are
arrays for every group of similar instruction, containing opcode and the corresponding
machine code. The loops go through all opcodes in array, comparing them to the one
that is being assembled. If the operand belongs to none of the groups, it is assembled
individually.

Having assembled all token lines, this pass generates arrays which help converting
between source code lines and offsets in machine code. This is mainly used for
breakpoints and to highlight machine code instruction being executed.

Pass 3
This is the last assembly pass. Here the program checks if there are any multiple label
definitions or any undeclared references, and then backpatches the program. The
algorithm goes through the list generated during the second pass, writing the
addresses of all references as requested.

The reason why a separate pass is required to backpatch is that the program does not
know addresses of all references until it has finished code generation.

CLab – Maintenance Processes

 143

Postprocessing
Having assembled the program, CLab will list all errors and warnings (if any). It will
also update all windows to reflect changes.

29.4. Fetch
To fetch an instruction, CLab gets the byte at current IP. It then checks if it has
already fetched some bytes. If it hasn’t, it will calculate and store the number of bytes
to fetch, using a special array, InstructionLen, generated at startup in exeInit.
Otherwise the program will simply fetch bytes and add them to CPU.CIB. If the
program detects that it has finished fetching an instruction which uses a memory
addressing, it will use the last fetched byte to determine the length of memory
addressing which will be appended to current instruction.

As soon as the last byte is fetched, instruction will be decoded into machine codes,
and the CPU will switch to execution mode.

29.5. Decode
Decoding is rather similar to code generation. Some instructions are grouped. There
are arrays which hold machine codes for every group, which are compared to current
machine code. As soon as instruction is identified, a microprogram which can be
directly executed by the CPU is generated.

A list of all microinstructions can be found in section (Microinstructions). A table of
microprograms for all machine codes can be found in (reference).

29.6. Execute
All that the execute cycle does is to take every microinstruction from Proj.CPU.DIB
and do actions if a respective signal is set. There is a list describing what each signal
does – see (Microinstructions).

Having executed all microinstructions, the CPU will prepare to fetch the next
instruction and then run the interrupt check algorithm. It will be that algorithm that
will switch to fetch if no interrupts are pending.

29.7. Interrupt
To check for pending interrupts, CLab goes through the bits of IS register, starting
with the low-order bit, which corresponds to interrupt request 0, thus giving it highest
priority. As soon as it encounters a bit set to 1, it will go and create a microprogram to
initiate the interrupt. This microprogram can be found in the (Appendix).

CLab – Maintenance Functions and procedures

 144

30. Functions and procedures

30.1. pGlobals

30.1.1. Main
This is the application entry point. It initialises the whole application, loading all
settings and showing relevant windows.

30.1.2. WindowProc
This is a wrapper for the real window procedure of fiMain form. The reason is that
VB does not allow to get the address of any procedure declared in a form module. But
we have to know the address of the window procedure to hook the window with the
SetWindowLong WinAPI function. Thus this clumsy wrapper in this module.

30.2. pUtils

Errr
Displays an error message containing the string passed to this procedure. It is just a
shorthand – this way we don’t have to bother about the caption, the icon and buttons.

Tally
Counts the number of occurrences of one string in another string.

FieldStr
Returns a specified element from a list stored in a string separated by a special
character.

InStrBack
The same as InStr except for the fact that it works backwards. It starts looking for
occurences at the end of the string, and returns the position of the first one.

Hex2Dec
Converts a hexadecimal number to a decimal number.

Dec2Hex
Converts a decimal number to a hexadecimal number.

Bin2Dec
Converts a binary number to a decimal number.

Dec2Bin
Converts a decimal number to a binary number.

CLab – Maintenance Functions and procedures

 145

Dec2Chr
Converts a decimal number to a base 256 number, returning the result as a big-endian
string.

Chr2Dec
Converts a base 256 number to a decimal number. The source number is interpreted as
big-endian.

Str2Chr
Formats source string by writing each character in hexadecimal, separated with a
space.

TestCharset
Tests if all characters of a given string belong to a given charset.

StringIsInt
Returns true if a given string is a decimal integer.

StringIsLong
Returns true if a given string is a decimal long integer.

GetFilename
Initiates an open or a save dialog using ComDlg functions GetSaveFileName or
GetOpenFileName.

AppDir
Returns application path with a backslash at the end.

Dec2Fmt16
Converts a decimal number to one of the supported number representations.

IsFmt16
Returns true if a given string is a valid 16-bit number in one of the supported number
representations.

Fmt2Dec16
Converts a number in any of the supported representations to a decimal number.

FntWrite
Writes text on a given device context using a given font. The reason for using this is
that for some reason a font selected into a DC is removed from that DC after the first
text output to that DC. Therefore, a font has to be selected every time.

CreateFnt
Creates a font by initialising an application-defined font structure and creating
respective GDI objects.

CLab – Maintenance Functions and procedures

 146

DestroyFnt
Destroys a font created by CreateFnt by destroying respective GDI objects.

30.3. pCompile

cmpInit
Initialises the module by arrays for all opcode compilation groups….

ReadCodeIntoProj
Copies the code written by the user from the text editing control into the Proj
structure.

PrgCompile
Assembles user program by reading the code into Proj structure, initialising some
variables, running all three assembly passes, displaying all errors and warnings, and
updating all windows.

PrgLoad
Loads an assembled program into RAM and updates RAM window.

CompilePass1
Assembly pass 1. Described in detail in (23.3 assembly).

CompilePass2
Assembly pass 2. Described in detail in (23.3 assembly).

CompilePass3
Assembly pass 3. Described in detail in (23.3 assembly).

CompileMemoryAddressing
This function is used in CompilePass2. Compiles a given memory addressing
operand into machine code which can be added to the instruction that requires it.

OperandIsRg
Returns true if a given operand is a register (A, B, C, D or E).

OperandIsRgn
Returns true if a given operand is a general-purpose register (B, C, D or E).

OperandIsMem
Returns true if a given operand is a memory addressing.

OperandIsIm8
Returns true if a given operand is an 8-bit immediate constant.

CLab – Maintenance Functions and procedures

 147

OperandIsIm16
Returns true if a given operand is a 16-bit immediate constant. If the operand is a
variable name, the function will still succeed because variable address is a known
constant.

CIm8
Converts an operand into an 8-bit number. No error-checking – this function assumes
OperandIsIm8 was called on the same operand to check validity.

CIm16
Converts an operand into a 16-bit number. No error-checking – this function assumes
OperandIsIm16 was called on the same operand to check validity. If the operand is a
variable name, the function will file a backpatch request and return 0.

AddErr
Adds a given error to the error list.

AddWng
Adds a given warning to the error list.

CleanSpaces
Converts all sequences of tabs and spaces into a single space. Used in CompilePass1.

30.4. pExec

exeInit
Initialises the module by filling an array of instruction lengths and some group decode
arrays.

GFlg
Checks if a given signal in a given microinstruction is set.

SFlg
Sets a given signal in a given microinstruction. Signals are passed as separate
parameters. Some signals (their names are prefixed with op_ for Operation) cause
SFlg to interpret the following parameter as a number and save it in a special register
in TpDI, depending on what op signal was used.

Tick
Executes one clock tick. This is a public function being a wrapper for the private
function eTick.

Step
Executes one whole instruction, fetching the next instruction.

CLab – Maintenance Functions and procedures

 148

eTick
Executes either a fetch or an execute cycle, then calls Tick procedure for all device
modules. Also increments the tick counter.

eFetch
Fetches one byte. For a detailed description see (Processes.Fetch).

eDecode
Decodes instruction in Proj.CPU.CIB. For a detailed description see
(Processes.Decode).

eExecute
Executes one microinstruction. For a detailed description see (Processes.Execute).

eInterrupt
Checks for interrupts. For a detailed description see (Processes.Interrupts).

DecodeMem
Adds such microinstructions to Proj.CPU.DIB as to calculate the address specified by
the memory addressing in Proj.CPU.CIB and store it in MAR.

reg_sX
Returns “select register X” signal for the signal specified by an integer (0 for B, 1 for
C, 2 for D, 3 for E).

DI2Str
Generates a string with the names of all signals in a given microinstruction.

30.5. pIO

devInit
Initialises all device modules by calling respective initialisation procedures.

devReset
Resets all devices by calling respective reset procedures.

devTick
Lets all devices to do some processing every tick if there is anything they want to do.

devPortRead
Queries all devices if any of them wants to respond to a port read signal with a given
address.

devPortWrite
Calls PortWrite for all devices thus simulating a port write operation.

CLab – Maintenance Functions and procedures

 149

IRQ
Devices call this function to request a given interrupt. Returns false if CPU cannot
accept the interrupt. Otherwise sets “pending” flag and returns true.

30.6. Common functions (all form modules)
This section describes functions common to all form modules.

Init – Initialises the module.
Form_Unload – Either hides or unloads the form depending on whether the
application is terminating or not.
Update – Changes data on the form to reflect changes to simulation state.
SaveLast – Stores register values in order to highlight them if they change.

30.7. Common functions (device modules)
Reset – initialises the device whenever the user restarts the program.
Tick – does some processing every clock tick.
PortRead – port read operation for the given device.
PortWrite – port write operation for the given device.

30.8. Other functions worth mentioning

fiMain.Hook
Hooks the main window by installing application-defined window procedure.

fiMain.Unhook
Unhooks the main window by returning the VB-defined window procedure. The main
window has to be unhooked before unloading it, otherwise VB crashes.

fiMain.WindowProc
Window procedure for fiMain initiated via a wrapper defined in pGlobals. Traps
minimize event and hides all forms. Also traps restore event and shows all forms
hidden during minimization. Traps clicks in the non-client area and activates the form
(VB’s message procedure does not do that if the form is non-movable).

fdVideo.SetVideoMode
Sets a video mode. Video mode number is the same as the one used with port write
operation.

fdVideo.UpdateScr
Repaints the video memory on the internal memory device context, ready to be blitted
onto screens.

CLab – Maintenance Functions and procedures

 150

fsCode.InvalidateRTB
Invalidates every line of the code editor, causing it to repaint fully.

fsCode.DisplayError
Highlights a given error/warning in the error list by showing it in the code editor and
highlighting the offending line. Optionally displays an error message with the
error/warning text.

fsCode.TransferBreakpoints
Copies breakpoints from the code editor into the Proj structure.

CLab – Maintenance Sample modifications

 151

31. Sample modifications

31.1. Renaming opcodes
It is very easy to rename opcodes. Opcode names are only used in pCompile module.
Use text search to find the opcode name – it will be either in cmpInit (for grouped
instructions) or in CompilePass2. Make sure that the new name is lowercase –
assembly language is not case-sensitive, so all comparisons are made in lowercase.

31.2. Adding an instruction
Adding an instruction is not exactly straightforward. Many parts of the program will
need modifications. The program was not designed with easy instruction set
updatability in mind.

Assembling a new instruction
CompilePass2 needs updating. There is a big block of code inside a loop through all
token lines. Inside that block there is a variable called t which contains current
opcode in lowercase. You will need to add an IF block to check if the program is
trying to compile the new instruction. The code inside the block will have to do all the
assembling and end with a GoTo NextTokenLine statement. Whatever your code has
assembled must be placed in variable ctl – it will be added to machine code
automatically.

When assembling an instruction, tl will contain current token line. So if you need to
check the number of parameters, use tl.Count, and tl.Token() array will contain
all tokens in the token line (e.g. tl.Token(0) will return your opcode).

You may find the following functions useful when assembling your instruction. To
check what type a given operand is, use OperandIsRg, OperandIsRgn,
OperandIsIm8, OperandIsIm16 or OperandIsMem.

Make sure that the first byte of your machine code equivalent is unique to your
instruction – otherwise CLab will have problems decoding it.

If the syntax is not correct, use AddErr to issue an error. If there is an assumption you
make, and you want the user to be aware of it, use AddWng to issue a warning.

If one of your operands is a memory addressing, use the CompileMemoryAddressing
function. Pass to it your operand and some backpatching information (see declaration
for details), and it will return compiled memory addressing bytes which can be easily
decoded with DecodeMem

Decoding a new machine code
First of all, add the first byte of your machine code to the InstructionLen array
initialisation. If N is the number corresponding to the first byte of your machine code
then the Nth element of the array must be the length of your machine code instruction.

CLab – Maintenance Sample modifications

 152

If you use memory addressing then specify the length of the instruction without the
addressing, with a minus sign.

Now you can decode the instruction. Add your code to the end of eDecode procedure.
Variable b will contain the first byte of the machine code – check if that’s the one you
want to decode. Now redim .DIB with elements from -1 to how many machine code
instructions you will need subtract 1. Call SFlg for each element of .DIB, supplying it
with all signals that you want.

If you want to place a condition, use op_jmp_cond flag followed by one of the
numbers from the table below. If a condition is not met, CPU will stop executing
current microprogram. Possible conditions are:

0 if greater
1 if not greater (if less or equal)
2 if less
3 if not less (if greater or equal)
4 if equal (if zero)
5 if not equal (if not zero)
6 if carry
7 if not carry
8 if overflow
9 if not overflow
10 if sign
11 if not sign

For example, SFlg(.DIB(0), op_jmp_cond, 6) will ensure that your microprogram
will only be executed if carry flag is set to true.

If you want to place a constant to IDB, use op_idb_im, followed by the constant you
need.

To decode a memory operand, place all microinstructions that you need before
calculating the address, then call DecodeMem. It will place microinstructions in
Proj.CPU.DIB which will calculate the address and place it into MAR. Redim .DIB
with a Preserve keyword and calculate element number using UBound(.DIB) if you
need to add more microinstructions.

31.3. Changing the amount of RAM
The amount of RAM is really hard-coded into CLab, so changing it is pretty much
impossible. You could in theory reduce the amount of RAM by placing a check
whenever RAM is accessed and issue an error if accessing out of bound, but why
would you need less RAM? If you wanted to increase the amount of RAM, you would
have to increase all register sizes (because 65k RAM uses all bits of 16-bit registers),
and you may have to rewrite a lot of code associated with decoding and executing
instructions, especially ALU instructions. You would also have to rewrite compilation
in order to allow for constants bigger than 16 bits.

CLab – Maintenance Appendices

 153

32. Appendices

32.1. Error and warning messages
All error and warning messages have codes associated with them. These codes have
the following syntax. The first letter is either E for error or W for warning. Second
and third characters indicate where the error occured (C1 – assembly pass 1, C2 –
assembly pass 2, C3 – assembly pass 3). The last three digits indicate error number.

EC1002 – Invalid token combination: X and Y.
EC1003 – Invalid token combination: X, Y and Z.
EC1004 – A line cannot contain more than three tokens. This line contains X tokens.

EC2001 – Opcode takes 0 operands, not X.
EC2002 – Variable initialisation sequence is neither ‘?’ nor a valid constant.
EC2005 – Syntax error in operand OR opcode and operand incompatible. Offending

operand: X.
EC2006 – The number of shift cycles must be between 0 and 15.
EC2007 – 16 bit immediate constant is out of range.
EC2008 – Invalid label name: X.
EC2009 – Label name cannot be same as register name.
EC2010 – Opcode not recognized: X. Check spelling.
EC2011 – Memory addressing scaling factor should be 0, 1, 2 or 4.
EC2013 – Cannot load into a constant (first operand cannot be a constant).
EC2014 – Cannot load a constant into a memory cell directly.
EC2015 – Cannot store in a constant (second operand cannot be a constant).
EC2016 – Cannot store a constant in a memory cell directly.
EC2017 – Operand for INT must be an 8 bit immediate constant.
EC2018 – Port address must be an 8 bit immediate constant (0 to 255).
EC2019 – DS variable should be initialised with either ? or a string literal enclosed

with “ ”.

EC3001 – Label already declared: X. Previous declaration on line Y.
EC3002 – Undeclared reference: X.

WC1001 – Labels must not be preceded by other tokens. Label moved to beginning of

line. Offending label: X.
WC1002 – Variable not initialised explicitly. Assuming uninitialised variable.

32.2. Microinstructions
The following signals can be parts of a microinstruction.

Name Num Description
reg_sb 0 Select B register
reg_sc 1 Select C register
reg_sd 2 Select D register
reg_se 3 Select E register
reg_ssp 4 Select SP register

CLab – Maintenance Appendices

 154

reg_sip 5 Select IP register
reg_r 6 Read from selected register to IDB
reg_w 7 Write from IDB to selected register
reg_ipi 8 Increment IP by 1
reg_spi 9 Increment SP by 2
reg_spd 10 Decrement SP by 2
adr_br 11 Use B register in addressing
adr_sr 12 Use selected register in addressing
adr_im 13 Use constant from IDB in addressing
adr_c 14 Calculate addressing and place result on IAB
lea_ad 15 Load value on IAB to IDB
acc_r 16 Read from accumulator to IDB
acc_w 17 Write from IDB to accumulator
flg_r 18 Read from FLAGS to IDB
flg_w 19 Write from IDB to FLAGS
ctl_mr 20 Send Memory Read signal
ctl_mw 21 Send Memory Write signal
ctl_pr 22 Send Port Read signal
ctl_pw 23 Send Port Write signal
mdr_ri 24 Read from MDR to IDB
mdr_re 25 Read from MDR to EDB
mdr_wi 26 Write from IDB to MDR
mdr_we 27 Write from EDB to MDR
mar_ri 28 Read from MAR to IAB
mar_re 29 Read from MAR to EAB
mar_wi 30 Write from IAB to MAR
mar_we 32 Write from EAB to MAR
alu_swp 33 Swap operands when performing ALU operation
ctl_halt 34 Halt the CPU
lea_da 35 Load value on IDB to IAB
flg_stz 36 Set zero flag
flg_clz 37 Clear zero flag
flg_stc 38 Set carry flag
flg_clc 39 Clear carry flag
flg_sto 40 Set overflow flag
flg_clo 41 Clear overflow flag
flg_sts 42 Set sign flag
flg_cls 43 Clear sign flag
flg_sti 44 Set interrupt flag
flg_cli 45 Clear interrupt flag

The following signals mean that specific data associated with them is present in a
respective TpDI element.

Name Num Description Data in
op_alu_sh 58 ALU shift operation – number of shifts .nAluSh
op_jmp_cond 59 Jump condition should be checked .nJmpCond
op_idb_im 60 A constant should be placed on IDB .nToIDB

CLab – Maintenance Appendices

 155

op_adr_mm 61 Addressing multiplier .nAdrMul
op_alu_c 62 ALU operation must be performed .nAluOpNum

CLab – Maintenance Notes

 156

33. Notes

33.1. Error policy
There are three types of errors in CLab. One is source code errors – they occur when
there is something wrong with user program because of user error and the program
cannot be compiled. Another one is usage errors – they occur when the user does
something he is not allowed to do. This could be, for instance, entering an incorrect
value somewhere in a dialog. The third type of errors is internal errors. These are
errors that occur when the program does something it is not supposed to do because of
a programming error. I tried to foresee what could go wrong had I made a tiny error
somewhere and inserted error traps in such sensitive places. If indeed I did make such
a tiny error I wouldn’t spend a lot of time trying to locate the error – I will see the
point where things first started to go wrong. Internal error messages always have a
technical explanation of what went wrong, which the user is not supposed to
understand. They also ask the user to contact the author.

33.2. Instruction Pointer vs Program Counter
While the program was designed and impleneted, this register was called IP for
instruction pointer, which seems to be a much more logical and easier to remember
name. But after consulting with my end-user, I realised that all syllabuses teach this
register as PC for Program Counter. So I changed the name everywhere where the user
will see it, but I kept it everywhere else. Now the register is called PC for the user and
it has both names to the programmer.

33.3. Microinstructions and Design
It was not clear at design stage whether real microinstructions would be really
necessary. While implementing the solution I realised that this is the easiest way to
show the user all that I needed to show about internal workings of a computer.
Therefore microinstructions are not mentioned in Design stage. All necessary
information about them can be found in this section, esp. in the Appendix.

CLab – Maintenance Notes

 157

User manual

A-level

CLab – Manual A-level Introduction

 158

34. Introduction

This system is designed to help you learn some topics which are on your Computing
syllabus. There are two main areas this program can help you with. They are assembly
language and computer internals.

With CLab you can:

• Write programs in assembly language and run them.
• See how each instruction changes values of registers and variables.
• Easily trace loops and stacks – something very complicated when done on a

whiteboard.
• See the structure of a computer on several levels, from peripherals down to

CPU core.
• Investigate interactions between different components of a computer in real-

time.

But most importantly, you will be able to see how your program interacts with
hardware – that is, you will be able to see exactly what each instruction does, which
can be extermely useful in understanding computers.

CLab – Manual A-level Writing and running programs

 159

35. Writing and running programs

When you start the system, you see the following two windows on the screen:

Throughout this manual the window on the top will be called the Main window. Note
that all program functions can be accessed through the Main window. To close the
program, close the Main window.

First of all, you will need to select the correct complexity level. Go to
Options/Complexity level menu and select the level you need:

CLab – Manual A-level Writing and running programs

 160

To write a program, click the “Write a program” button. The program editor will pop
up:

 Click – the editor shows:

Now you can type your program! Refer to the Assembly language manual to find
out how to write programs.

When you have finished writing your code, press F5 to start the program. If the code
is correct, the program will be executed. If there are errors, CLab will list them to you
at the bottom of the screen and display an error message for the first error. It will also
highlight the first error with red:

CLab – Manual A-level Writing and running programs

 161

Feel free to play with your code for a while. Use the Registers and Variables button in
the Main window to view the contents of registers and variables. These functions will
be discussed in more detail later.

When you press F5 (you can use the Run/Start and Run/Continue menu as well),
CLab will execute the instructions in your program one by one, at a set speed. You
can change this speed in the Simulation menu in the Main window. If you don’t want
the program to execute the next instruction until you tell it to, use F8 key (Run/Step
menu).

Whenever a program is being executed, the current instruction will be highlighted
with aqua colour, with the exception of the maximum speed:

If you want your program to stop at a certain point, use breakpoints. CLab will pause
program execution whenever it reaches a line with a breakpoint. To place a
breakpoint, move the cursor to the line you want and press F9. You can also click with
the mouse to the left of the line:

Breakpoints have no effect when you execute program step by step.

CLab – Manual A-level Tracing program execution

 162

36. Tracing program execution

If you want to see how exactly your program works, you should first of all run it in
either step by step mode or set exectution speed to slow (see above to find out how to
do that). Whenever you are in one of these modes, the current instruction being
executed is highlighted.

36.1. Number representation
If you want to see all values in decimal or binary rather than hexadecimal, go to
Options/Number format menu in the Main window and select the format you need:

36.2. Debugging
The easiest way to investigate how your program works is by watching registers.
Click on the Registers button in the main window, and the Registers window will pop
up. You can also view variables declared in your project and see the stack:

 Click
 Windows pop up:

CLab – Manual A-level Tracing program execution

 163

Registers window will show you all the registers accessible to you when you write
programs. All registers that have changed since last instruction will be highlighted
with red, as in the example above. You can edit registers by simply typing in the new
value and pressing Enter.

The Variables window will also let you edit variables – just select the one you want
and type in the new value. You cannot edit stack. In the stack window, the value to
which Stack Pointer points is highlighted with red colour, as in the example above.

36.3. Viewing execution
If you want to see exactly how your program is executed, you will need to use the
CPU window, which will show you the structure of the CPU, its current state (such as
Fetching next instruction) and the values of all relevant registers.

This is the CPU screen in Basic complexity mode:

It has a lot of components missing – they are not displayed for simplicity. When you
run your program, you can see the values in all registers. In A-level mode you will be
able to see the contents of the Control Unit, and the MAR/MDR registers:

CLab – Manual A-level Tracing program execution

 164

Another tool which can help you with understanding the way programs are executed
is the RAM window. This window will show you the machine code associated with
your program, as well as program data and stack:

You can easily edit memory – just point the Editing position (shown above) at the
required cell and type in a new value. Be very careful with editing executable code
– your program will most probably generate an error, and there is a possibility of
CLab crashing.

If you right-click in the RAM window, you will see a pop-up menu which will give
you quick access to any area of memory:

Current instruction in machine code

Your whole program in machine code

Non-zero values outside your program

Editing position

CLab – Manual A-level Using devices

 165

37. Using devices

There are three devices in CLab: Display, Keyboard and Speaker. Each of them has a
controller. This section will tell you how to write code for each of the devices.

You can access devices by clicking on respective icons on the Main window. You can
access their controllers only via the menu – go to View/Hardware:

37.1. Video controller and display

Examples of the Display and Video controller windows are shown below:

You don’t need to know everything about the video controller – most of its functions
are provided for students who are insterested in how the video system works in
computer. You will never need to use video controller window if you simply want to
print something on the screen.

Everything that you see on the Display is stored in a special area of RAM, called the
video memory. It is possible to tell the controller how to interpret information stored
in that area – text or graphics, or how many colours there are – by switching video

 Click to see devices

 Click to see controllers

CLab – Manual A-level Using devices

 166

modes. There are two basic modes you need to be aware of – please consult your
teacher if you are insterested in more. They are:

• Monochrome text, 40x15 characters, mode number 1.
• 24 bit color graphics, 42x32 pixels, mode number 7.

Prior to doing anything with the screen you will need to switch to the required mode.
Type the following line in your program:

out 50h, 2 ; To switch to color text mode

or

out 50h, 7 ; To switch to color graphics mode.

Now you can print text or draw!

To print text
Write your characters to address 0E000h and onwards. To calculate the exact address,
multiply your Y-coordinate by 40 and add your X coordinate to that. Add the whole
thing to 0E000h and print!

Alternatively, you can use the Print routine from the LiBRARY which is supplied
with CLab (see Testing for full source code). The Print routine will print out any
string you ask it to – just make sure there is a zero byte at the end of your string.
Below is all the code needed to print out MYSTRING

ld a, offset(MYSTRING)
call Print
...
halt

MYSTRING: ds “Hello, world!”
 dw 0

To draw
Again, the same idea. Just load your three colour bytes into positions calculated with
the following formula:

address = 0E000h + (y*42 + x)*3

The last multiplication by three is needed because every pixel takes up three bytes.

37.2. Keyboard and Keyboard controller

The keyboard and its controller will let you interact with the program you are running.
Keyboard windows look like this:

CLab – Manual A-level Using devices

 167

Whenever you click a key on the keyboard, the keyboard controller will request
interrupt number 1 from the CPU. If the CPU accepts it, it will invoke the keyboard
interrupt service procedure (ISP). So if you want to receive keys pressed on the
keyboard, you will need to write an ISP.

Your ISP should be like a normal procedure with the exception that it should end with
an iret instruction, not ret. Also, you absolutely have to preserve all registers,
except for PC and FLAGS, because your ISP can be invoked at any point in your code.

Below is an example of an ISP:

isp_keyboard:
 push a ;Preserve A and B – we don’t use other registers
 push b

 in a, 60h ;Get the key into A
 ld b, a ;Store the key in B

 pop b ;Restore registers
 pop a

 iret ;Finished

OK, it doesn’t do anything useful, but it is simple enough for you to get the idea. You
may be wondering how to do anything useful with an ISP if it is not allowed to
modify any registers. Well, there is another means of communication with external
world, and this is how it’s done in real PCs. Your ISP could store the keys in a special
memory area (which is always fixed in DOS). Then any program which needs to
receive keyboard input will simply examine that memory area. A more advanced
operating system such as Windows will provide the programmer with a special
function which will return if any keys have been pressed.

Now you need to install the ISP – that is, tell the CPU which ISP to start when it
executes interrupt 1. Just write the following code at the beginning of your program –
you need not know how it works:

ld a,offset(isp_keyboard)
ld [0FF02h],a

37.3. Speaker and Speaker controller

Speaker is the simplest device in CLab, but at the same time it’s least useful. All you
can do is set it to high or low state, or tell it to oscillate at a given frequency. The

CLab – Manual A-level Using devices

 168

main purpose of this device is to show students how to use I/O ports on a very simple
example. But of course you can use this device as a flag or some sort of an indicator.

The speaker window is combined with speaker controller window:

Whenever the speaker is set to Low, it will look like in the left window above. High
setting will be shown as in the right window above.

To change the speaker state, write 0 or 1 to port 80h:

out 80h, 1 ;Set speaker high

To set a frequency, write any other number to port 80h:

out 80h, 0F500h ;Set speaker frequency to 9.57 Hz

To calculate speaker frequency, use the following relationship:

frequency = 20 / 65536 * byte

where byte is the byte you wrote to port 80h.

CLab – Manual A-level Testing the program

 169

38. Testing your program

If you have an interactive end-user ready program, you can test it as if it was running
on a real PC. Just use the Computer window that pops up when you first run CLab.
You can open the window with the Computer button on the Main window:

The computer window looks like this:

To run a program, just make sure you have the code in the Code editor and use the
Start/Reset buttons in the Main window to control the execution of the program.

CLab – Manual A-level Assembly language manual

 170

39. Assembly language manual

This section will help you learn how to write programs for this particular version of
CLab. Please note that I will only describe the syntax and the most useful instructions.
For a full set of instructions, please see the (Design.Assembly) section. That section
also contains a more formal definition of assembly language syntax.

Statements
Every line of the code you write is called a statement. You have several options as to
what you write on a given line. You can write one of the following:

• an empty line
• a line of code
• a variable declaration

Apart from that, every line can start with a label declaration and end with a comment.

Comments
Comments should start with a semicolon. Everything after the first semicolon to the
end of the line will be completely ignored by CLab.

Labels
A label helps you define a specific position in your code. If a label precedes an
instruction, you will be able to use that label name with a jump or a call instruction. If
it precedes a variable declaration, it will define the name of the variable.

Label names have to start with a letter and contain only letters, numbers and
underscores. Every label must end with a colon followed by at least one space or tab
character, unless the line ends with the label. For example:

number: dw 0 ;Label “number” is a variable name; note one space after :
next: ld a,0 ;Label “next” points to code; note three spaces after :
calculate: ;Label points to whatever code follows; note no spaces or tabs

Variables
To declare a variable, use a label together with either dw (declare word) or ds (declare
string) to declare, respectively, a word or a string variable. dw must be followed by a
numerical constant between -32768 and 65536. If you want to use hex or binary, add
an “h” or a “b” to the end of the number. For example:

myvar1: dw 25 ;Declare myvar1 containing 25 (decimal)
myvar2: dw 0F00h ;Declare myvar2 containing 0F00 (hexadecimal)
myvar3: dw 10000b ;Declare myvar3 containing 10000 (binary)

If you declare a string variable, you must add your string after ds, enclosed with
double quotes:

CLab – Manual A-level Assembly language manual

 171

mystring: ds “Hello world” ;Declare a string containing “Hello world”.

You can also initialise variables with addresses of other variables. For example,

addr_myvar: dw offset(myvar)

See Immediate operands below for more information about offset.

Code lines
Every line of code must contain operation code (opcode). Most useful opcodes are
listed in the (instructions) section below. It can also contain operands, as many as a
given opcode requires, separated by a comma.

Operands can be of three different types. These are register, immediate and memory
operands.

Register operands
If an instruction requires a register operand, you can specify A, B, C, D or E. Sometimes
opcodes require specific registers – some will ask for A only, and some for anything
except for A. Registers can also appear as part of memory operands.

Immediate operands
Immediate operands are numerical constants. If you want to, say, load zero into a
register, then zero will be an immediate operand. Different opcodes let you specify
different range of constants. You have the option to specify the number in any of three
bases – two, ten or sixteen. Binary numbers have to end with a ‘b’ letter. Hex numbers
have to begin with a digit and end with an ‘h’ letter. For example:

10100 ;valid, interpreted as 10,100
10100b ;valid; interpreted as 20
10102b ;invalid

0F00 ;invalid
0F00h ;valid; interpreted as 3840
F000h ;valid; interpreted as variable name
0XG0h ;invalid

All numerical constants can be prefixed with a minus sign to get the negative number.
Numerical constants can also appear as part of memory operands.

Whenever you can specify a numerical constant, you can also use the offset macro to
specify the address of a variable. Just write, offset(varname) instead of the
constant, and it will be replaced with varname’s address. In the following example,
the two lines are equivalent, assuming that myvar is declared at address 100h.

ld a, 100h
ld a, offset(myvar)

CLab – Manual A-level Assembly language manual

 172

Memory operands
Whenever you need to address a cell in memory (e.g. when you need to get the value
of a variable), you will need to use memory operands. There are four different types
of memory operands.

Direct memory operands let you specify the address of the memory cell directly. You
should write the memory address as a numerical constant, enclosed with square
brackets. You can also simply write variable name. For instance:

 ld a, [0100h] ;Loads contents of memory cell 100h into a
 ld a, myvar ;Loads contents of variable myvar into a

Indirect register memory operands let you address memory cell at address held in a
register. You can use B, C, D or E registers. Register name should be enclosed with
square brackets. For instance:

 ld a, [b] ;Loads contents of memory cell at address held in b into a

Indirect immediate memory operands let you address a memory cell whose address
is stored in another memory cell. You can either specify a numerical constant
enclosed with two pairs of square brackets or a variable name enclosed with square
brackets. For instance:

ld a, [[0100h]] ;Load contents of memory cell at address specified in
memory cell at address 100h into a.

ld a, [myvar] ;Load contents of memory cell at address held in myvar
into a.

Indexed memory operands let you specify an expression to calculate the address. You
would usually use this addressing to access arrays of data. You can specify where the
array begins (base address), element number (index), element size (multiplier) and an
optional offset constant. For example, if you need to get element number three from
array of words starting at myarr you will use the following code:

 ld b, offset(myarr) ;only B register can hold base address
 ld c, 3 ;element number
 ld a, [b+c*2] ;load element data into a – word is two bytes long

It is very easy to loop through arrays with this kind of addressing – just load the offset
of your array into b before the loop, and then do a loop on a register. Use that register
in your indexed addressing.

Instead of using the base address, you could have added the address of myarr as a
numerical constant:

 ld a, [c*2+offset(myarr)]

Please note that the only required parameter is the register that you index on.
Everything else is optional. Also be aware that the order in which you specify

CLab – Manual A-level Assembly language manual

 173

parameters is crucial, and there must not be a single space in the whole operand. And
don’t forget to enclose it with square brackets.

CLab – Manual A-level Instructions

 174

40. Instructions

This section will tell you about the instructions available to you, and how to use them.
Instructions are sorted in the order of how often you may need them, and grouped by
similarity.

40.1. Data movement

ld dest, src
Loads value in src into dest. You can use ld to load:

• register into register ld a, b
• variable into register ld a, myvar
• constant into register ld a, 20h
• register into variable ld myvar, a

Please note that you cannot load a constant into a variable. Load the constant into a
register first, and then load the register into your variable.

st src, dest
Stores value in src in dest. You can use st to store:

• register in register st b, a
• variable in register st myvar, a
• constant in register st 20h, a
• register in variable st a, myvar

Please note that you cannot store a constant in a variable. Store the constant in a
register first, and then store the register in your variable.

40.2. Basic arithmetic

add dest, src
Performs the following mathematical operation: dest ← dest + src
You can use add to add:

• constant to accumulator add a, 20h
• variable to accumulator add a, myvar
• register to accumulator add a, c
• accumulator to register add c, a

Note that you cannot add two numbers if neither of them is stored in the accumulator.
Load one of the numbers into the accumulator first.

sub dest, src
Performs the following mathematical operation: dest ← dest - src
You can use sub to subtract:

• constant from accumulator sub a, 20h
• variable from accumulator sub a, myvar
• register from accumulator sub a, c
• accumulator from register sub c, a

CLab – Manual A-level Instructions

 175

Note that you cannot subtract two numbers if neither of them is stored in the
accumulator. Load one of the numbers into the accumulator first.

mul dest, src
Performs the following mathematical operation: dest ← dest * src
You can use mul to multiply:

• constant by accumulator mul a, 20h
• variable by accumulator mul a, myvar
• register by accumulator mul a, c
• accumulator by register mul c, a

Note that you cannot multiply two numbers if neither of them is stored in the
accumulator. Load one of the numbers into the accumulator first. Mul does not take
sign into account – use imul if you want to multiply signed numbers. Imul is the
same as mul in all other respects.

div dest, src
Performs the following mathematical operation: dest ← dest / src
You can use div to divide:

• constant by accumulator div a, 20h
• variable by accumulator div a, myvar
• register by accumulator div a, c
• accumulator by register div c, a

Note that you cannot divide two numbers if neither of them is stored in the
accumulator. Load one of the numbers into the accumulator first. Div does not take
sign into account – use idiv if you want to divide signed numbers. Idiv is the same
as div in all other respects.

40.3. Conditional and unconditional branching

cmp left, right
Compares left and right and sets the flags in such a way that a consequtive call to
one of the conditional branching instructions will branch according to its name. For
example, if left is less than right then jl (jump if less) will do a jump. You can
compare the following numbers:

• accumulator with constant cmp a, 20h
• accumulator with variable cmp a, myvar
• accumulator with register cmp a, c
• register with accumulator cmp c, a

Please note that you cannot compare a register other than the accumulator with a
constant. Load the constant into a register and then compare.

jg label
Checks the FLAGS register and either performs a jump to label or doesn’t. If you use
the cmp instruction before this one, jg will perform a jump if the left number was
greater than the right number. Label should be a label name which you declared
somewhere in your code.

CLab – Manual A-level Instructions

 176

jl label
Checks the FLAGS register and either performs a jump to label or doesn’t. If you use
the cmp instruction before this one, jl will perform a jump if the left number was
less than the right number. Label should be a label name which you declared
somewhere in your code.

jge label
Checks the FLAGS register and either performs a jump to label or doesn’t. If you use
the cmp instruction before this one, jge will perform a jump if the left number was
greater than or equal to the right number. Label should be a label name which you
declared somewhere in your code.

jle label
Checks the FLAGS register and either performs a jump to label or doesn’t. If you use
the cmp instruction before this one, jle will perform a jump if the left number was
less than or equal to the right number. Label should be a label name which you
declared somewhere in your code.

jz label
Checks the FLAGS register and either performs a jump to label or doesn’t. If you use
the cmp instruction before this one, jz will perform a jump if the left number was
equal to the right number. Label should be a label name which you declared
somewhere in your code.

jnz label
Checks the FLAGS register and either performs a jump to label or doesn’t. If you use
the cmp instruction before this one, jnz will perform a jump if the left number was
not equal to the right number. Label should be a label name which you declared
somewhere in your code.

jmp label
This will always jump to label. Label should be a label name which you declared
somewhere in your code.

40.4. Procedures and stack

call label
Calls procedure starting at label. Label must be a label name declared somewhere in
your code. When the procedure ends (with a ret instruction), your program will
continue execution right after the call instruction.

ret
Returns from a procedure call initiated by call instruction. You should end all your
procedures with this instruction. Make sure that stack is the same as when your
procedure started before calling ret – otherwise you will get unpredictable results.

CLab – Manual A-level Instructions

 177

push src
Pushes value stored in src onto stack. You can push registers and constants only.

pop dest
Pops (pulls) a value from stack and stores it in dest. You can only pop into registers.

40.5. More arithmetic

neg src & not src
Neg changes the sign of value in src. Not inverts all bits in src, so that all 1’s become
0’s and vice versa. In both cases src must be a register.

and dest, src & or dest, src
And performs a bitwise and operation between dest and src and stores the result in
dest. Or performs a bitwise or operation in the same way. You can and / or the
following numbers:

• Accumulator and constant and a, 20h
• Accumulator and variable and a, myvar
• Accumulator and register and a, c
• Register and accumulator and c, a

The truth tables for and and or are as follows:

v1 v2 and v1, v2 or v1, v2
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Shifts
There are two types of shifts you need to be aware of – arithmetic and logical. The
difference is that arithmetic shifts take sign into account (they preserve it if possible),
whereas logical don’t. In CLab, you can shift to the left or to the right up to 15 bits at
a time, using either shift type.

Logical shifts: lshl (logical shift left) and lshr (lgical shift right)
Arithmetic shifts: ashl (arithmetic shift left) and ashr (arithmetic shift right)

Each of these operations takes two operands – arg and num. The operations will shift
the value in arg by num bits and store it back to arg. You can shift the accumulator by
a number of bits specified in a non-accumulator register, or a non-accumulator
register by a constant number of bits. This is how the shifts are performed:

 carry source source carry
lshl 0 1000 1111 0 lshr 0 1000 1111 0

CLab – Manual A-level Instructions

 178

 carry source source carry
ashl 0 0010 1111 0 ashr 1000 1111 0

40.6. Flow control and I/O

halt
This instruction will stop the execution of your program. Use it when you want your
program to terminate. You have to use halt when you have something written after
the point where you want your program to end. Consider the following example:

 ld a, myvar
 ld b, a
 This is where the program should stop
myvar: dw 5

The program won’t stop at that point because, as you may remember from your A-
level course there is no way to tell which machine codes mean code and which – data.
So CLab will try to execute whatever is represented by the variable 5. You don’t want
this to happen, so you need to tell CLab explicitly to stop. That’s what halt is for.

cli
This instruction prevents the CPU from accepting any interrupts. Why you’d want to
do that is beyond the scope of A-level computing, but you may definitely write some
code to check how it works. Cli stands for “clear interrupts”.

sti
This instruction enables interrupts after they were disabled with cli. Sti stands for
“set interrupts”.

in dest, src
Reads a word from port number src and stores it in dest. You can in into registers,
specifying port number as a register or a constant. The following are both valid:
 in a, c
 in a, 50h

out dest, src
Writes a word src to port number dest. You can specify port number and data,
respectively, as:

• register, register out a, c
• register, constant out a, 20
• constant, register out 50h, a
• constant, constant out 50h, 5

CLab – Manual A-level Error codes

 179

41. Error codes

When you try to run your program, you may get an error message. Every message has
a short explanation with it and an error code. But the short explanation may be very
confusing and not always very helpful. In this section I will try to help you find out
what the problem is.

EC1002 – Invalid token combination: X and Y.
You are trying to put together operands, opcodes or variable declarations in a way that
is fundamentally wrong. For instance, you may be trying to put variable declaration as
if it was an operand, or specify an opcode after its operand.

EC1003 – Invalid token combination: X, Y and Z.
You are trying to put together operands, opcodes or variable declarations in a way that
is fundamentally wrong. For instance, you may be trying to put variable declaration as
if it was an operand, or specify an opcode after its operand.

EC1004 – A line cannot contain more than three tokens. This line contains X

tokens.
There is something wrong with the syntax you are using. It should never happen that a
line has more than three distinct part to it. There are no opcodes which require more
than two operands, for instance. Make sure you don’t have too many spaces or tabs
where they shouldn’t be, especially in memory operands.

EC2001 – Opcode takes 0 operands, not X.
The opcode you are using requires no operands. You have specified at least one
operand. Make sure there is nothing (except for comment if you need one) after the
opcode name.

EC2002 – Variable initialisation sequence is neither ‘?’ nor a valid constant.
When you declare a variable, there is what is called “variable initialisation sequence”
after the dw or ds keyword. dw requires this sequence to be a valid numerical constant.
ds requires it to be a string enclosed with double quotes. Often students forget they
have to initialise a variable when they declare it. If you have indeed initialised it,
check if your number is valid, or your string has the closing double quote.

EC2005 – Syntax error in operand OR opcode and operand incompatible.

Offending operand: X.
This error happens in many different contexts. What it basically means is that either
one of the operands in completely invalid (e.g. you specify 0Xh as a numerical
constant), or that the opcode you are using doesn’t like the operand types you have
specified. The latter is most often the reason for the error. Consider the following
case:

test c, 5

You will get EC2005 error because test requires one of the operands to be the
accumulator.

CLab – Manual A-level Error codes

 180

I have tried to clarify the reason for some of the more frequent errors of this type. For
instance, if you want to load a numerical constant into a variable, you would get this
error because ld doesn’t allow for operand types memory/immediate. But I trap that
as a special case and tell you exactly what the problem is. However, it is very difficult
to trap all cases and explain what exactly is wrong. So the best piece of advice I can
give you if you get this error is that you should carefully check which operands you
can use with your opcode that gives you the error.

EC2006 – The number of shift cycles must be between 0 and 15.
You are using one of the shift instructions and ask it to perform more than fifteen
shifts. The maximum number of shifts allowed is 15. You would not need any more
because sixteen shifts is the same as no shifts (for cyclic shifts), and seventeen is the
same as 1 shift.

EC2007 – 16 bit immediate constant is out of range.
Whenever you specify an immediate constant, CLab checks whether it is in the
allowed range (-32768 to 65536, or -8000h to 0FFFFh). If it is not, you will get this
error message.

EC2008 – Invalid label name: X.
Label names have to start with a letter and can only contain letters, numbers or
underscores. If your label name contains anything else, you will get this error.

EC2009 – Label name cannot be same as register name.
You are trying to declare a label named A, B, C, D or E. That is not allowed.

EC2010 – Opcode not recognized: X. Check spelling.
The compiler sees that you are trying to specify an instruction, but it cannot
understand the opcode you use. Usually this means you have misspelled the opcode.
For example, xhcg a,b will generate this error.

EC2011 – Memory addressing scaling factor should be 0, 1, 2 or 4.
You use indexed memory addressing and try to multiply the index register by a
number which is not 0, 1, 2 nor 4. For example, [b+c*3] will produce this error.

EC2013 – Cannot load into a constant (first operand cannot be a constant).
You use ld instruction with the first operand being a constant. For example, ld 5,a is
erroneous. You probably meant ld a,5 or st 5,a.

EC2014 – Cannot load a constant into a memory cell directly.
You try to load a constant into a variable or a memory cell in one go. This is not
allowed. You must first load the constant into a register, and then load that register
into the variable/memory cell.

EC2015 – Cannot store in a constant (second operand cannot be a constant).
You use st instruction with the second operand being a constant. For example, st
a,5 is erroneous. You probably meant ld a,5 or st 5,a.

CLab – Manual A-level Error codes

 181

EC2016 – Cannot store a constant in a memory cell directly.
You try to store a constant in a variable or a memory cell in one go. This is not
allowed. You must first store the constant in a register, and then store that register in
the variable/memory cell.

EC2017 – Operand for INT must be an 8 bit immediate constant.
Interrupt numbers have to be between 0 and 255. Check what interrupt number you
have specified. You are not allowed to use registers.

EC2018 – Port address must be an 8 bit immediate constant (0 to 255).
Port addresses have to be between 0 and 255. Check what port address you have
specified.

EC2019 – DS variable should be initialised with either ? or a string literal enclosed

with “ ”.
When you declare a variable, there is what is called “variable initialisation sequence”
after the ds keyword. ds requires it to be a string enclosed with double quotes. Often
students forget they have to initialise a variable when they declare it. If you have
indeed initialised it, check if your string has the closing double quote.

EC3001 – Label already declared: X. Previous declaration on line Y.
A label with a given name can only be declared once. You have declared a label with
the same name somewhere else in your code. It sometimes happens that students use
the same label name for a procedure and for a variable. That is not allowed – all label
names have to be unique.

EC3002 – Undeclared reference: X.
You are referring to a label or a variable name which is not declared in your code.
Check if you have spelled the name correcly. Also check if you have declared the
variables you are referring to. See Variables above for more information on how to do
that.

CLab – Manual A-level Error codes

 182

User manual

Teacher’s extras

CLab – Manual Teacher’s extras

 183

42. Introduction

While writing user manual, I realised that teachers would mostly need the same
information as A-level students. So I will not copy and paste the whole A-level
manual here – this section will contain all the extra information that a teacher may
need.

43. Installation

The system is distributed as a single executable file called setup.exe. Run that file.
Follow the instructions that you see on the screen. The installation program, created
with a freeware installer called Instyler, will prompt you for program path – change it
if you need to. Then click Install button.

After the installation, the program may ask you if you would like to restart. If it does,
click Yes.

The installation program will place a shortcut to CLab executable in the start menu
and on your desktop.

44. Devices

44.1. Video controller
The image displayed on screen is stored in RAM at a given memory address. You can
find out that address or set it to something else using port 52h. See below for more
detail.

Screen modes
01h: Monochrome text; 1 byte per char; 40x15 characters

Every byte represents one character’s ASCII code.

02h: Color text; 2 bytes per char; 40x15 characters

Every two bytes represent one character’s ASCII code and color. The first byte
in the pair is the character’s ASCII code, the second one – its colour. The color
byte format is: LRGB lrgb, where R, G and B are Red, Green and Blue
components respectively, L is a brightness bit, uppercase means background
color, lowercase – text color.

03h: Monochrome graphics; 1 bit per pixel; 208x156 pixels

Every byte describes eight pixels. If a bit is set, color seen will be white;
otherwise – black.

04h: 16 color graphics; 4 bits per pixel; 104x78 pixels

Every byte describes two pixels. The format is: LRGB, where R, G and B are Red,
Green and Blue components respectively, L is a brightness bit.

05h: 256 color graphics; 8 bits per pixel; 74x55 pixels; paletted

CLab – Manual Teacher’s extras

 184

Every byte describes one pixel. The color that is seen on screen will be taken
from a palette array inside the video controller memory which is 256x3 bytes
long. That is the palette memory, which stores three bytes (RGB) for every color
in this mode.

07h: 16M color graphics; 24 bits per pixel; 42x32 pixels

Every three bytes describe one pixel. The format is, RGB where R, G and B are
bytes describing respective colors.

Input/Output ports

Screen mode port 50h
Writing screen mode number to this port will cause the video controller to switch
screen modes. If it receives any other word apart from valid screen mode numbers, it
will ignore it. The changes will be reflected immediately, even in manual refresh
mode.

Reading from this port will cause the video controller to return its current screen
mode.

Palette port 51h
To change an entry in the palette array, programs will write two words to this port.
The first one will contain palette entry number in the low-order byte and the red
component in the high-order byte. The second word will contain green and blue
components in low- and high-order bytes respectively. Note that once sent to the
video controller, palette cannot be read from it. Also, palette only influences images
in screen mode 05h.

Memory port 52h
Writing to this port will change the offset to video memory buffer in RAM. The
changes will be reflected immediately. That is, even in manual refresh mode the
screen will be updated to reflect changes to video memory.

If a program reads from this port, it will receive current pointer to video memory.

Refresh port 54h
Writing 0 to this port will disable auto screen refresh, so changes to video RAM will
only be reflected when the programmer wants to. Writing 1 will enable auto screen
refresh, so the screen will be updated every once in a while. Writing anything else will
force the screen to be refreshed.

Reading from this port will return either 0 or 1 to indicate the state of auto refresh.

CLab – Manual Teacher’s extras

 185

44.2. Keyboard controller scancodes

Scancode Hex Key
0 00 A
1 01 B
2 02 C
3 03 D
4 04 E
5 05 F
6 06 G
7 07 H
8 08 I
9 09 J
10 0A K
11 0B L
12 0C M
13 0D N
14 0E O
15 0F P
16 10 Q
17 11 R

Scancode Hex Key
18 12 S
19 13 T
20 14 U
21 15 V
22 16 W
23 17 X
24 18 Y
25 19 Z
26 1A .
27 1B Enter
28 1C Spacebar
29 1D =
30 1E 0
31 1F 1
32 20 2
33 21 3
34 22 4
35 23 5

Scancode Hex Key
36 24 6
37 25 7
38 26 8
39 27 9
40 28 Numpad .
41 29 /
42 2A *
43 2B -
44 2C +
45 2D Left
46 2E Right
47 2F Up
48 30 Down
49 31 Circle
50 32 Square
51 33 Triangle

44.3. Complete instruction manual
This section will list all instructions there are in CLab, with a very short summary on
what the instruction does and its syntax.

Operand types

M memory (any addressing mode),
R register (A, B, C, D or E),
Rn register (B, C, D or E),
A accumulator,
I 16-bit immediate,
I8 8-bit immediate,
N immediate as part of the machine code.

44.3.1. Data movement
These instructions move data between registers and memory. They also include stack
operations. None of these modify the FLAGS register.

Name Arguments Description
ld dest, src Copies contents of src to dest. Allowed dest/src combinations: R/R, R/M,

R/I, M/R.
st src, dest Copies contents of src to dest. Allowed src/dest combinations: R/R, M/R,

I/R, R/M.
push src Copies contents of src to [SP], then increments SP by 2. Src is type R or I.
pop dest Decrements SP by 2, then copies contents of [SP] to dest. Dest is type R.
pushpc - Pushes PC register onto stack, pointing to after the pushpc instruction.
pushsp - Pushes SP register onto stack. SP value before this operation is pushed.
pushfl - Pushes FLAGS register onto stack.
popsp - Pops SP register from stack.
popfl - Pops FLAGS register from stack.
sp2b - Copies the contents of SP register into B register. Used to access parameters

that are passed on stack quickly.

CLab – Manual Teacher’s extras

 186

lea dest, src Load effective address. Allowed dest/src combinations: Rn/M. Loads the
address calculated for src into register dest.

xchg r1, r2 Swaps values in registers r1 and r2 so that value in r1 goes to r2 and vice
versa. r1 and r2 are type Rgn.

44.3.2. Arithmetic
These instructions do addition, subtraction, multiplication etc. All of these set the
FLAGS register (flags z, s, o, c; n, p) according with the result.

Name Arguments Description
add addto,

addwhat
Adds addwhat to addto, saves result in addto. Allowed addto/addwhat
combinations: A/I, A/M, A/R, R/A.

sub subfrom,
subwhat

Subtracts subwhat from subfrom, saves result in subfrom. Allowed
subfrom/subwhat combinations: A/I, A/M, A/R, R/A.

adc addto,
addwhat

Adds addwhat, addto and carry, saves result in addto. Allowed addto/addwhat
combinations: A/I, A/M, A/R, R/A.

sbb subfrom,
subwhat

Subtracts subwhat from subfrom, then subtracts carry from the result, saves
final result in subfrom. Allowed subfrom/subwhat combinations: A/I, A/M, A/R,
R/A.

cmp left, right Compares left with right and sets flags so that conditional jumps work
correctly. E.g. if left<right then JL will do a jump. The opeartion subtracts
right from left and discards the result. Allowed left/right combinations:
A/I, A/M, A/R, R/A.

mul arg1, arg2 Multiplies arg1 by arg2. Saves result in arg1. Treats values as unsigned
integers. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.

div num, denom Divides num by denom, saves the integer part of the result in num. Interprets num
and denom as unsigned integers. Allowed num/denom combinations: A/I, A/M,
A/R, R/A.

imul arg1, arg2 Multiplies arg1 by arg2. Saves result in arg1. Treats values as signed integers.
Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.

idiv num, denom Divides num by denom, saves the integer part of the result in num. Interprets num
and denom as signed integers. Allowed num/denom combinations: A/I, A/M, A/R,
R/A.

mod num, denom Divides num by denom, saves the remainder part of the result in num. Interprets
num and denom as unsigned integers. Allowed num/denom combinations: A/I,
A/M, A/R, R/A.

inc arg Increments arg, that is adds 1 to it. Arg is type R.
dec arg Decrements arg, that is subtracts 1 from it. Arg is type R.
neg arg Reverses the sign of arg. This is equivalent to not arg; inc arg; but occupies

only one byte. Arg is type R.

44.3.3. Bitwise
Bitwise operations such as AND, OR, shifts, etc. All of them modify the FLAGS
register (flags z, s, c; n, p) according with the result.

Name Arguments Description
not arg Bitwise NOT – inverts all bits in arg. Arg is type R.
and arg1, arg2 Bitwise AND. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.
or arg1, arg2 Bitwise OR. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.
xor arg1, arg2 Bitwise XOR. Allowed arg1/arg2 combinations: A/I, A/M, A/R, R/A.

CLab – Manual Teacher’s extras

 187

test left, right Performs a bitwise AND operation on left and right and sets the flags
according with the result. Result itself is discarded. A/I, A/M, A/R, R/A.

lshr arg, num Shifts3 bits in arg by num to the right. Low-order bit goes to carry, high-order
bit becomes zero. Allowed arg/num combinations: A/Rn, Rn/N.

lshl arg, num Shifts3 bits in arg by num to the left. High-order bit goes to carry, low-order bit
becomes zero. Allowed arg/num combinations: A/Rn, Rn/N.

ashr arg, num Shifts3 bits in arg by num to the right. Low-order bit goes to carry, high-order
bit stays the same. Allowed arg/num combinations: A/Rn, Rn/N.

ashl arg, num Entirely equivalent to lshl.
ror arg, num Rotates3 bits in arg by num to the left. Low-order bit goes to high-order bit and

carry. Allowed arg/num combinations: A/Rn, Rn/N.
rol arg, num Rotates3 bits in arg by num to the left. High-order bit goes to low-order bit and

carry. Allowed arg/num combinations: A/Rn, Rn/N.
rcr arg, num Rotates3 bits in arg by num to the left through carry. Carry goes to high-order

bit and low-order bit goes to carry. Allowed arg/num combinations: A/Rn, Rn/N.
rcl arg, num Rotates3 bits in arg by num to the left through carry. Carry goes to low-order bit

and high-order bit goes to carry. Allowed arg/num combinations: A/Rn, Rn/N.
bswp src Swaps bytes in src so that the high-order byte becomes the low-order byte and

vice versa. Src is type R.

44.3.4. Flags
These operations are used to modify the FLAGS register.

Name Arguments Description
stz - Sets zero flag.
clz - Clears zero flag.
stc - Sets carry flag.
clc - Clears carry flag.
sto - Sets overflow flag.
clo - Clears overflow flag.
sts - Sets sign flag.
cls - Clears sign flag.
sti - Sets interrupt flag.
cli - Clears interrupt flag.

44.3.5. Branching
These are all operations that change execution order. They change IP register (and CS
where applicable), so the next instruction to be executed changes as well.

Name Arguments Description
jg,
jnle

addr Jumps to addr if z = 0 and s = o. Addr is an absolute address of type M.

jl,
jnge

addr Jumps to addr if s <> o. Addr is an absolute address of type M.

jge,
jnl

addr Jumps to addr if s = o. Addr is an absolute address of type M.

jle,
jng

addr Jumps to addr if z = 1 and s <> o. Addr is an absolute address of type M.

jz,
je

addr Jumps to addr if z = 1. Addr is an absolute address of type M.

jnz,
jne

addr Jumps to addr if z = 0. Addr is an absolute address of type M.

CLab – Manual Teacher’s extras

 188

jc addr Jumps to addr if c = 1. Addr is an absolute address of type M.
jnc addr Jumps to addr if c = 0. Addr is an absolute address of type M.
jo addr Jumps to addr if o = 1. Addr is an absolute address of type M.
jno addr Jumps to addr if o = 0. Addr is an absolute address of type M.
js addr Jumps to addr if s = 1. Addr is an absolute address of type M.
jns addr Jumps to addr if s = 0. Addr is an absolute address of type M.
jmp addr Unconditional jump. Addr is an absolute address of type M.
call addr Pushes IP registers onto stack; then jumps to addr. Addr is an absolute

address of type M.
ret - Pops data from stack to IP (i.e. does a jump to address on stack)
int num Initiates software interrupt num. Num is type I8.
iret - Return from interrupts handlers. Pops FLAGS and IP from stack.
halt - Brings processor to a halt. In this project this instruction will stop simulation.

44.3.6. Input/output
This section contains operations that send and receive data via input/output ports.

Name Arguments Description
in dest, prt Reads data from port prt and places it to dest. Dest/prt can be following

combinations: R/R, R/I8.
out prt, src Writes data src to port prt. Allowed prt/src combinations: R/R, R/I, I8/R,

I8/I.

44.3.7. Other

Name Arguments Description
nop - No operation. The CPU goes on to fetch next instruction after fetching this one.

44.3.8. Notes

3 Shifts/rotations with num greater than 1 are equivalent to several shifts/rotations by
1. Only 4 low-order bits matter in num operand. Therefore, the maximum number of
shifts/rotates in one operation is 15 and the minimum is 0.

Appraisal

CLab Appraisal

 190

44.4. Comparison to original requirements

The General requirements were all achieved without any doubt. The users can load
and save their code, write programs with syntax highlighting, run, pause and step
through programs, place breakpoints, watch register/variable contents and many other
things. But more importantly, as required, CLab can not only be used to teach
assembly language. CLab shows in detail the internal structure of a simple computer,
and lets the user see exactly what happens inside a computer when it runs a program.

The system supports three different detail levels (i.e. complexity levels), as required.
The users can choose between Basic (GCSE) mode, Medium (A-level) mode and Full
mode. It is true that the user can write and debug programs without ever knowing it is
compiled, and that is true of all complexity modes, and not just Basic mode as stated
in the Requirements.

All instructions required were implemented. Also many other instructions are
available in CLab. The user has a choice of several addressing modes, all of which are
required by the A-level syllabus.

One of the features which was required provided there will be enough time was a set
of animations which would help to explain some topics. This requirement was not met
due to lack of time.

44.5. Objectives
Three distinct objectives were stated in the Objectives section in Analysis. One of
them was to demonstrate the operation of internal computer components, especially
the CPU. This objectve was met – CLab shows the workings of the CPU, video
controller, keyboard controller and speaker. Another objective was to provide a fully
functional assembly language simulator. CLab does indeed provide such a simulator,
with syntax highlighting and debugging features. Unfortunately, the third, optional
objective of providing a set of interactive simulations was not met because there was
not enough time available.

44.6. Success?
My Computing teacher, who is my main end user, agreed to spend a 90-minute
session with the class using CLab to write assembly language programs. By the end of
the session all students (there were four) had a working program. It is hard to tell
whether this can be considered a success according to the quantitative criteria set in
Analysis. I was unable to test the program on a bigger class. In such a small class
everybody got more help from the teacher. There was another problem – at this time
of year, everybody has already had some practice in writing in assembly language. It
was not much, but again it doesn’t match the criteria.

Still, I think the project is a success. The students did not think CLab was too
complicated to understand. They said that user manual was helpful. My teacher also
said he thought the program is useful as a teaching means.

CLab Appraisal

 191

44.7. Ways to improve

There are still lots of things I can think of which can be improved about CLab. Three
months to half a year of intense work on it could bring it up to a sellable standard.
Here is a list of some possible improvements:

• There are still many loose ends in the program. It sometimes crashes because
of the hooked minimize/restore events, which has to be fixed for a real system.

• Error messages in assembly language compiler can be made a lot more
helpful.

• An integrated electronic help would be extremely useful.
• It is not very hard to make a trace table feature – the users can select the

variables/registers they need, and CLab will record their value for every
instruction executed.

• The tiny data windows which should have shown the signals sent by hardware
to communicate were not implemented. It could be done in an improved
version of CLab.

• The animations and interactive demonstrations that were not created could be
very useful.

• It would be good if the user could save the whole project, including current
simulation state, window layout, etc. in a file.

• Syntax highlighting could be made customizable.
• The system could have the “test” feature where the teacher would set up

questions and the students would have to answer them.

